NTN Portable Vibroscope

This Compact and light sensor unit enables measurement of vibration in various places

Features

(1) Light and compact
The Sensor, power and WiFi wireless units are integrated into a single package
(overall dimensions/weight: W 41 mm × D 36 mm × H 87 mm, 145 g).

(2) Easy measurement
This unit allows for smart devices that support iOS to measure vibration data.

(3) Determines abnormalities
Using OA and FFT methods the user is able to determine abnormalities of bearings via dedicated applications,
identifying damaged parts when abnormalities are detected.
Ease of use by graphic display of the measurement history and storage in the smart device allowing for
continuous access to the condition of the equipment.

(4) Dust and water resistant
IP65 enclosure to assist with portable usage.

Application

- Failure detection, vibration measurement, analysis and trend management of bearings

Power button

Vibration sensor

Thread size M6 (P = 1), depth 4 mm
Can be attached with glue or magnet (accessory)*

*Magnet (accessory)
Our Line of New Products

“N³ N-CUBE,” Container Type Transportable Independent Power Supply

Power generation and storage devices by natural energy (wind, water and solar light) for quick installation

Concept model

Workflow from installation to start of power generation

Features

(1) During an emergency response such as natural disasters, the provided space can be used as storage for supplies or as a living space.
(2) Transportable independent power supply and storage unit with power generation by natural energy (wind, water, and solar light).
(3) Compact package of devices for easy storage
(4) Quick installation and prompt start of power generation/supply

Standard specification

<table>
<thead>
<tr>
<th>Product type</th>
<th>12-feet container (L 3.7 m × W 2.4 m × H 2.5 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means of transportation</td>
<td>Truck, freight vessel and helicopter</td>
</tr>
<tr>
<td>Power devices</td>
<td>Wind turbine: 0.5 kW, hydro turbine: 1.0 kW, solar power generator: 0.9 kW, battery: 8.6 kWh</td>
</tr>
<tr>
<td>Installation time</td>
<td>1 hour by 2 persons</td>
</tr>
<tr>
<td>Survival wind speed/flow rate</td>
<td>Wind turbine and solar power generator: 30 m/s¹, hydro turbine: 2 m/s²</td>
</tr>
</tbody>
</table>

*¹ Extreme wind speed *² Maximum water flow

Application

- Power supply to medical devices
- Power supply for cooking/storage equipment
- Supply of emergency stock
- Supply of drinking water
- Provide space
- Power supply for information devices
- Charging for smartphones
- Power supply to toilets and air conditioners

Workflow from installation to start of power generation:

1. Transportation/installation
2. Open
3. Start power generation

Concept model:

- Power supply to medical devices
- Power supply for cooking/storage equipment
- Supply of emergency stock
- Supply of drinking water
- Provide space
- Power supply for information devices
- Charging for smartphones
- Power supply to toilets and air conditioners