

Constant Velocity Joints for Industrial Machines: Application Examples CAT.No.5604/E

NTN Constant Velocity Joints (CVJ) support countless industries around the world

NTN was the first to commercialize CVJs in Japan as a joint to transfer drive power from vehicle engines to the tires. Since then, NTN has continued to lead the industry with its high level of technical expertise, developing and supplying high-performance, lightweight and compact CVJ with a long operating life for automobiles, as well as countless other industries around the world including steel manufacturing, paper manufacturing, food processing, and medical applications.

1

Refer to the relevant catalogs above for technical data such as allowable torgue and permitted rotational speed for standard type CVJ listed in this "Constant Velocity Joints for Industrial Machines: Application Examples."

Paper Manufacturing Machinery

Example of app

Example of applications of constant veloci	i ty joints····· 03 to 18
1 Metal Seal Joint ·····03	5 Insulation Joint ••••••11
2 High Top Joint (HTJ) •••••05	6 Elastomer Boot ·····13
3 Three Piece Joint ••••••07	Vertical Type Joint ••••••15
Cross Groove Joint ••••••09	8 Highly Corrosion Resistant Joint ••• 17
Appendices ••••••	•••••••••••••••••19 to 21
Features of NTN Constant Velocity Joints (CVJ) ••19	Service Condition Confirmation Sheet •••21

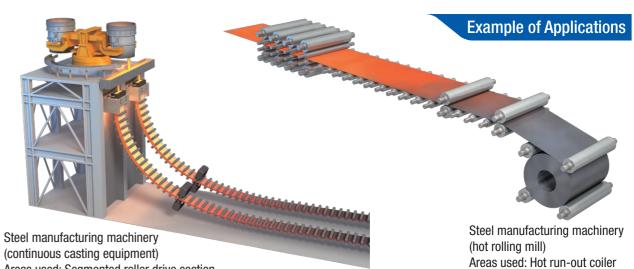
ri-Ball Joint Constant /elocity Joints Small and Medium Size at No 5602/

Example of Applications 1 **Metal Seal Joint**

Superior heat resistance, water resistance and dust resistance enable a long operating life in severe environments that make the use of rubber boots difficult, which contributes to reliable equipment operation and easier maintenance.

Features

Water resistance, dust resistance


The seal of joint provides a more complete seal for a longer operating life when used in areas subjected to water splashes or high levels of dust.

Heat resistance

The use of a metal seal enables the joint to be used in high-temperature ranges where the use of rubber boots is difficult.

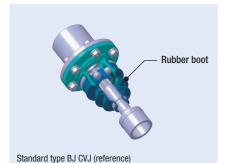
High strength

Metal seals are less likely to be damaged by flying debris compared to rubber boots, which makes them suitable for many severe applications.

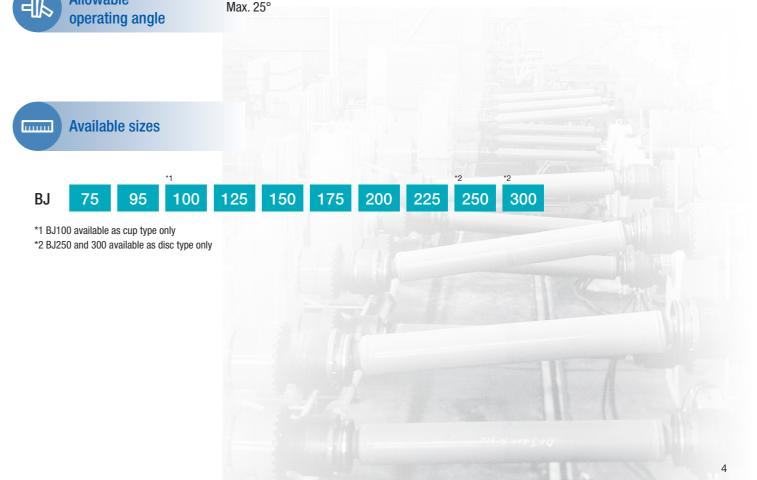
(continuous casting equipment) Areas used: Segmented roller drive section

Specifications

Contact NTN for considering individual specifications.


Allowable

Same allowable torque as standard type joints.


Structure

Metal seals have a spherical shape to prevent damage to sealed sections caused by high temperatures, corrosive environments or flying debris. They are also available with a grease

nipple, or O-ring between seals for better sealing.

Grease nipple Seal inner rind Seal outer ring Coiled spring

High-load capacity

Instead of the spline fitting

structure between the inner race and shaft that is used with large

DOJs, the inner race and shaft are

integrated, allowing a higher load

capacity. (Fig. 6)

High Top Joint (HTJ)

High Top Joints (HTJ) are more compact than the large DOJ type, allowing greater torque transmission, for both space-efficient and high-load capacity applications.

High rigidity

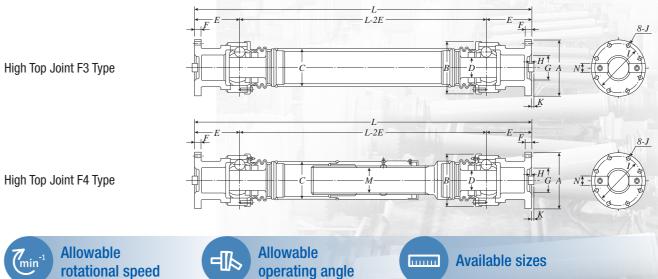
Greater load capacity (allowable

torque) and high strength with the

integrated inner race and shaft

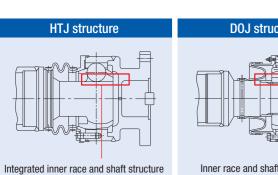
structure, achieving a higher

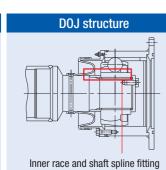
rigidity than DOJ.


Steel manufacturing machinery (continuous casting equipment) Areas used: Segmented roller drive section

Specifications

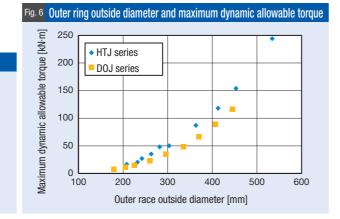
Dimensions


Allowable torque (″N-m


Joint		imum	Outs	side diam	neter	Shaft	Wic	ith	Spigot o	liameter	Bolt	hole	Ke	ey	Invo	olute sp	line	N	linimum	Length	L
Size	-	amic vable				diameter									M (F	4 type	only)	F3 1	Гуре	F4	Туре
	tor	que	Α	В	С	D	Ε	F	G	Н	Ι	J	K	N	Nominal size	No. teeth	Module	Nominal size	Expansion	Nomina size	al Expansion
	kN∙m	kgf∙m	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm			mm	mm	mm	mm
HTJ200	16.5	1680	225	208	152	81.5	180	24	100	3.5	197	15	13	40	113	28	3.75	750	±10	1200	+50~0
HTJ220	20.2	2060	240	232	152	87.5	185	24	105	4.5	208	17	13	40	113	28	3.75	800	±10	1250	+50~0
HTJ240	27.0	2750	265	242	191	96.0	210	31	115	4.5	229	19	17	50	140	29	4.50	900	±10	1350	+50~0
HTJ260	35.0	3570	285	263	191	105.0	230	31	125	5.0	245	21	17	50	140	29	4.50	950	±10	1450	+50~0
HTJ280	48.0	4900	310	282	216	120.0	245	34	135	6.0	270	21	19	55	153	39	3.75	1050	±10	1500	+50~0
HTJ300	50.2	5120	330	303	216	125.0	255	34	145	6.0	286	23	19	60	153	39	3.75	1100	±10	1550	+50~0
HTJ350	86.9	8860	395	363	280	150.0	280	38	175	6.0	347	25	21	65	204	32	6.00	1150	±10	1650	+50~0
HTJ400	118.0	12000	445	413	320	198.0	310	42	205	8.0	391	29	23	70	240	38	6.00	1400	±10	1900	+50~0
HTJ450	154.0	15700	490	453	356	216.0	340	47	225	8.0	430	32	26	80	255	32	7.50	1550	±10	2050	+50~0
HTJ500	244.0	24900	570	534	400	253.0	390	50	260	10.0	504	35	28	85	285	36	10.00	1750	±10	2250	+50~0

Max.	300	min ⁻¹

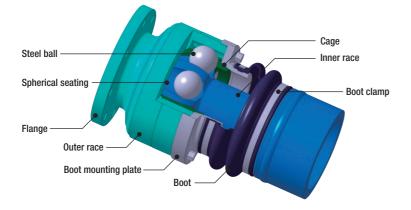
Max. 8°



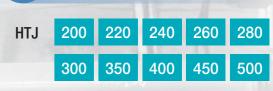
Space saving

A design is 23 to 33% more

compact than DOJ with the same


load capacity (allowable torque).

Structure


Features

- (1) The High Top Joint has an integrated inner race and shaft structure.
- (2) The cage makes contact with the spherical seating and boot mounting plate to limit sliding in the axial direction.
- (3) Also available with a metal seal as an option.

Example of Applications

Three Piece Joint

The intermediate shaft consists of three pieces, which makes it easier to replace the CVJ unit. The joint itself can also be removed to replace the boot, to significantly improve ease of maintenance.

Easier CVJ unit

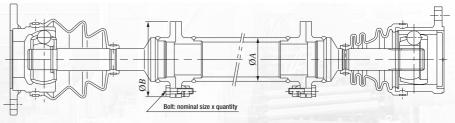
replacement

Replacement work on longer joints

may be difficult due to the layout of

equipment and machinery. The three

piece joint can be separated to make


replacing the CVJ unit easier in

confined spaces.

Areas used: paper rolls

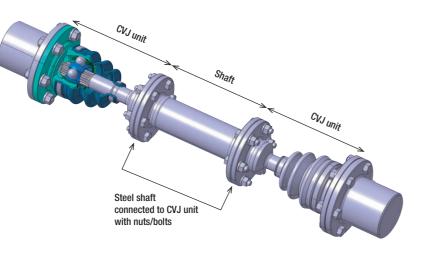
	Specifications		Joint Size		Steel shaft	Flange outside diameter	Nominal bolt
	opecifications	BJ Disc Type	BJ Cup Type	DOJ, BC	– outside diameter ØA mm	ØB mm	size x quantity
		75	75	68			
		95	95	75	48.6	91	M8 x4
Easier aftermarket	Dimensions			87			
inventory storage		125	100	100	60.5	104	M8 x8
inventory storage		125	125	125			
The CVI unit is compact design		150	-	150	76.3	129	M10 x8
The CVJ unit is compact design		175	150	175	89.1	140	M10 x8
which requires less storage space,		200	175	200 10	101.6	168	M14 x8
naking aftermarket inventory control		225	200	225	101.0		
asier.		250	225	250	139.8	215	M16 x8
		300	225	300			
		_	_	350	165.2	252	M18 x8
		_	_	400	190.7	282	M20 x8
		_	_	450	016.0	210	M00 x10
		_	_	500	216.3	318	M22 x10
		_	_	550	267.4	365	M22 x12
				625	280.0	378	M22 x16

Features

quickly.

Standard type CVJs feature a single shaft that cannot be separated, however with the three piece joint, the shaft is mounted to the CVJ unit with nuts/bolts.

Easier boot


replacement

The CVJ unit itself can be removed,

allowing the boot to be replaced

Standard type CVJ (reference)

(min ⁻¹	Allow rotati	able onal s	peed		(N-m	Allow	able t	tor
	•••••••	t NTN f nal spee	or allow ed.	vable				allowat ard type	
	Availa	able si							
BJ	75	95	100	125	150	175	200	225	*2
DOJ	68	75	87	100	125	150	175	200	2
BC	68	75	87	100	125	150	175	200	*

Example of Applications

rque

Allowable operating angle

e torque as oints.

Same allowable operating angle as standard type joints.

*1 BJ100 available as cup type only *2 BJ250 and 300 available as disc type only

Cross Groove Joint

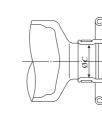
A CVJ with superior high-speed rotation due to elimination of backlash inside the joint. This technology is widely used in automotive propeller shafts.

Specifications

No backlash achievement

The Cross Groove Joint (LJ) achieves constant velocity by controlling the position of the steel balls on the crossed inner race and outer race track. The steel balls can be preloaded and no backlash inside the joint in rotating direction and radial direction.

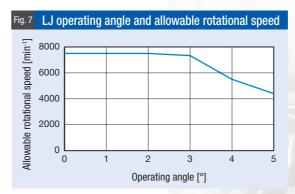
Superior rotational balance and high-speed stability


No backlash contribute to superior rotational balance and high-speed rotation.

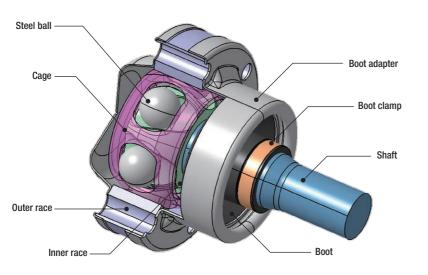
Low vibration

No backlash contribute to superior vibrational characteristics.

Dimensions


Joint Size	Diameter						
	Α	В	С	D (Dia.×P.C.D.)			
	mm	mm	mm	mm			
LJ75	86.0	88.0	22.0	Ø8.1×74.0			
LJ87	94.0	96.0	23.0	Ø8.1×80.0			
LJ95	100.0	102.0	26.0	Ø8.1×86.0			
LJ109	108.0	110.0	28.5	Ø10.1×94.0			

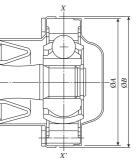
rotational speed


The allowable rotational speed of the Cross Groove Joint varies depending on the operating angle and torque load. The torque shown in Fig. 7 assumes minimal torque is applied (around 50 N·m). Contact NTN for considering individual specifications.

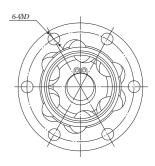
Structure

Features

The Cross Groove Joint can slide and achieves constant velocity by controlling the position of the steel balls on the crossed inner race and outer race track. In order to limit the deformation of the boot during high-speed rotation, apply a boot with a metal adapter rather than a bellows shaped boot.



9


Example of Applications

Special vehicles Areas used: power takeoff (PTO)

(″N-m

Allowable torque

Contact NTN for considering individual specifications.

Example of Applications 5 **Insulation Joint**

A CVJ can be insulated to protect against electrical corrosion caused by straying current by applying electrical insulating material to the connecting bolts between flange of electric motor side and CVJ unit.

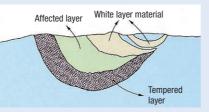
Features

Excellent electrical insulating properties

(1) The use of electrical insulating material prevents damage to the CVJ caused by electrical corrosion.

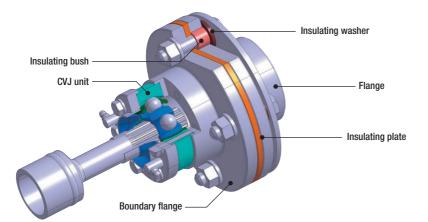
(2) Electrical resistivity (laminated phenolic resin): 10^7 to $10^{10} \Omega \cdot m$

Suitable for almost all CVJ


The feature is applicable to almost all standard catalog CVJ types.

Electrical corrosion

Currents flowing within the CVJ can generate sparks along the tracks resulting in tempering caused localized high temperatures, reducing hardness. Continuing to use the CVJ under such conditions causes peeling in areas with reduced hardness, eventually damaging the CVJ.


Cross-section of region with electrical corrosion

Description of region with electrical corrosion

Structure

Laminated phenolic resin is used as an insulator for the joint flange. Contact NTN if joints need to be made with other insulating materials.

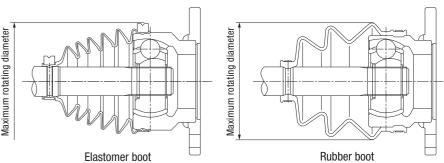
Steel manufacturing machinery (surface treatment equipment) Areas used: electroplating line **Specifications** Allowable Same allowable rotational speed as standard type joints. rotational speed Allowable torque Same allowable torgue as standard type joints. ('N-m Allowable ⊸∏⊳ Same allowable operating angle as standard type joints. operating angle **Available sizes** Suitable for all CVJ models with flange outside diameter dimensions Ø580 or less. 100 125 150 175 200 225 250 75 95 300 BJ 350 175 200 225 250 300 400 450 DOJ 150 87 100 125 175 200 BC 87 100 125 150 68 75 *1 BJ100 available as cup type only *2 BJ250 and 300 available as disc type only

Example of Applications

Steel manufacturing machinery (surface treatment equipment) Areas used: electroplating line

Elastomer Boot

Superior flexural fatigue resistance compared to standard chloroprene rubber boots, minimal ozone deterioration and long operating life. This technology is widely used in automotive CVJ applications.



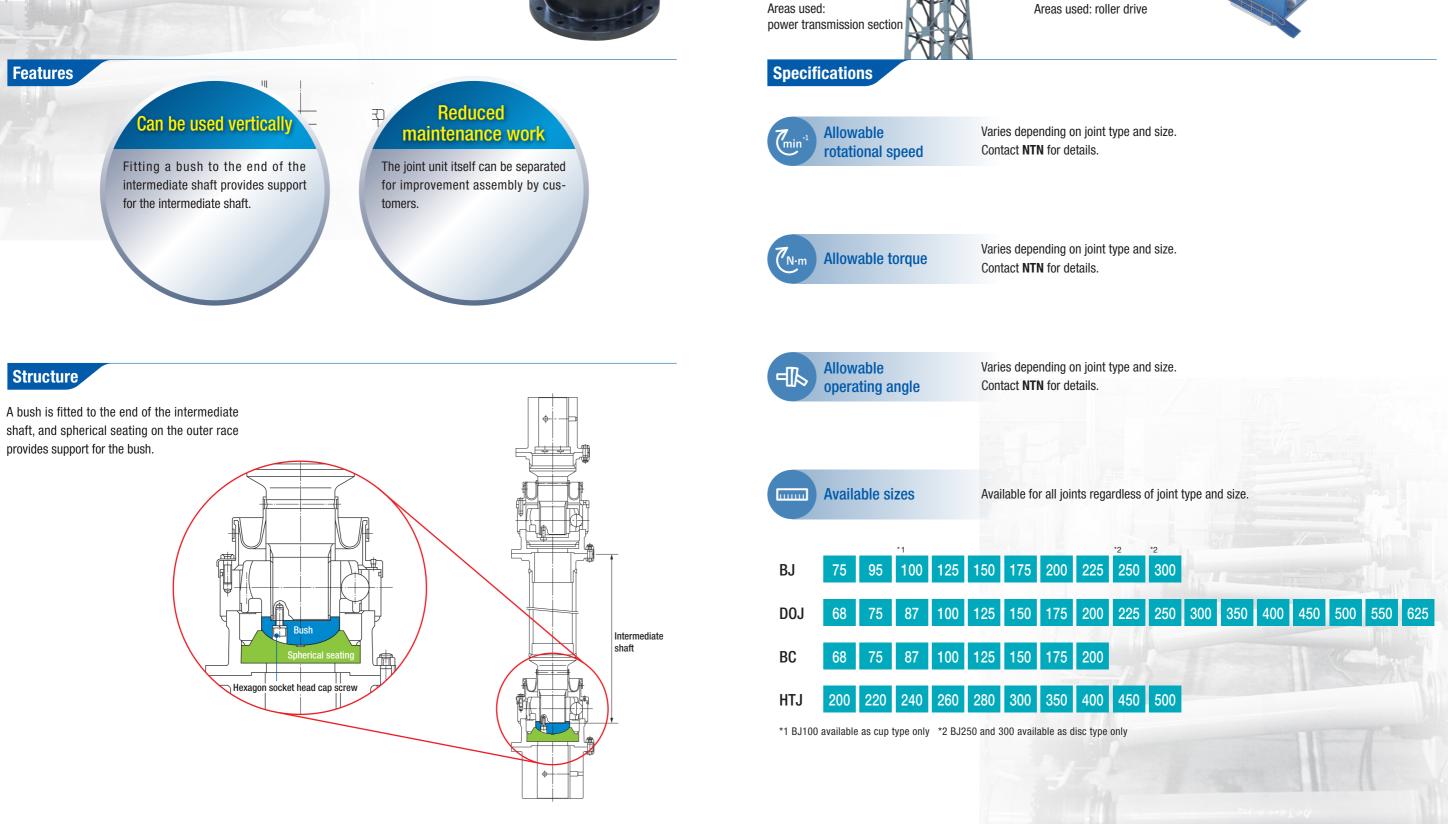
Mechanical character Elastomer boot Standard rubber boot Material TPEE CR Hardness Type D Durometer 40 to 50 Type A Durometer 50 to 70 Stretching 650% 300% Tensile strength 300kg/cm² 160kg/cm² Heat resistance \bigcirc \bigcirc Ozone resistance \bigcirc 0 Crack development \bigcirc 0 Wear resistance \bigcirc \bigcirc \bigcirc 0 Fatigue resistance

 \bigcirc : Superior \bigcirc : Good

ANN Chemical machinery (film stretchers Areas used: roller drive

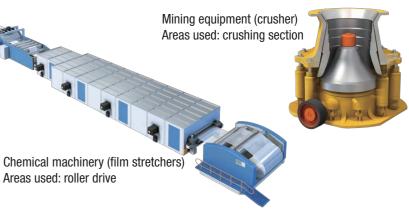
BJ	Maximum rotating diameter $\left[\text{mm}\right]^{*1}$						
DJ	Elastomer boot	Rubber boot					
75	91.6	81.0					
95	109.0	108.0					
100	113.7	112.0					
125	138.2	148.0					
150	162.7	165.0					
175	176.7	172.0					
200	206.7	199.0					

(Contact NTN Engineering for other specifications.)


Special vehicles Areas used: driveshafts

The allowable rotational speed is higher than standard type joints using rubber boots. Contact NTN Engineering for specific figures of testing for individual specifications.

*1 The maximum outside diameter of elastomer boot units and rubber boots units differs, so verify interference with adjacent components when considering replacements.


Example of Applications 7 **Vertical Type Joint**

A CVJ can be used in a vertical position with the addition of a bush to the intermediate shaft and spherical seating on the outer race.

Wind turbines (vertical axis turbine)

Example of Applications

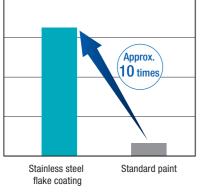
Highly Corrosion Resistant Joint

CVJ with paint containing stainless steel flakes applied for a high level of corrosion resistance, weatherability and chemical proofing.

Suitable for

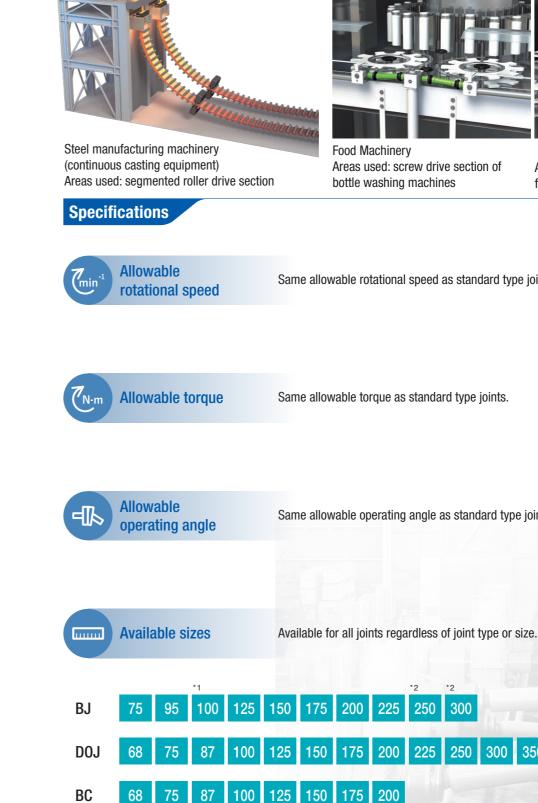
all joints

Paint is the only special addition


required for standard CVJs, and it is available for all types of joints,

regardless of type or size.

Features


High corrosion resistance

The insulating effects of the stainless steel flake laminated film against corrosive substances protects against penetration by chemicals or gases, making the joint suitable for use in corrosive atmospheres. The paint can be applied to all surfaces of CVJs.

Comparison of paint durability life in salt spray test

HTJ

200

220

240

260

280

300

350

400

Areas used: screw drive section of

Areas used: screw drive section of filling machines

Same allowable rotational speed as standard type joints.

Same allowable operating angle as standard type joints.

*1 BJ100 available as cup type only *2 BJ250 and 300 available as disc type only *3 Check the specifications on P6 for HTJ technical data

Features of NTN Constant Velocity Joints

NTN Constant Velocity Joints

Appendix

Constant Velocity Joints are joints that transmit rotational torque from the input side (such as electric motors) smoothly through various angles and distances to the output side (such as rollers).

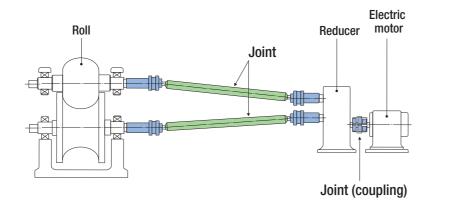
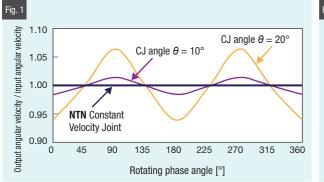
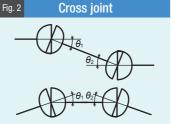


Fig. 3 Constant velocity joints

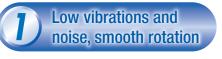
Can be used as a single joint


Does not need to be positioned


for constant velocity, even if $\theta_1 \neq \theta_2$

Constant Velocity Joints operate at a constant velocity with no change in angular velocity

When non-constant velocity joints such as cross joints (CJ) transmit rotational power from the main shaft to the driven shaft, the angular velocity of the driven shaft changes in two cycles per revolution as shown in Fig. 1, even if the angular velocity of the main shaft is constant. Thus to ensure an almost constant velocity, an intermediate shaft must be used to connect the two joints as a single system, with the two joints arranged at the opposing angles along the same plane or in parallel as shown in Fig. 2.


NTN constant velocity joints are constant velocity as a single joint, so there is no change in angular velocity between the main shaft and driven shaft. This means that even if the center line of both the main and driven shafts varies, they do not need to be arranged on the same plane, and can be set to any desired angle. (Fig. 3)

Two joints used as a single system Must be positioned correctly for constant velocity so that $\theta_1 = \theta_2$

Superiority of constant velocity joints

CVJs have lower vibrations and noise compared to other joints, and their smooth rotation (constant velocity rotation) helps to improve product guality and stable equipment operation.

Ease-of-handling

Ambient surrounding environment

Safety

CVJs are easier to handle, as they do not require joint angle/positioning or centering between left and right joints like cross joints.

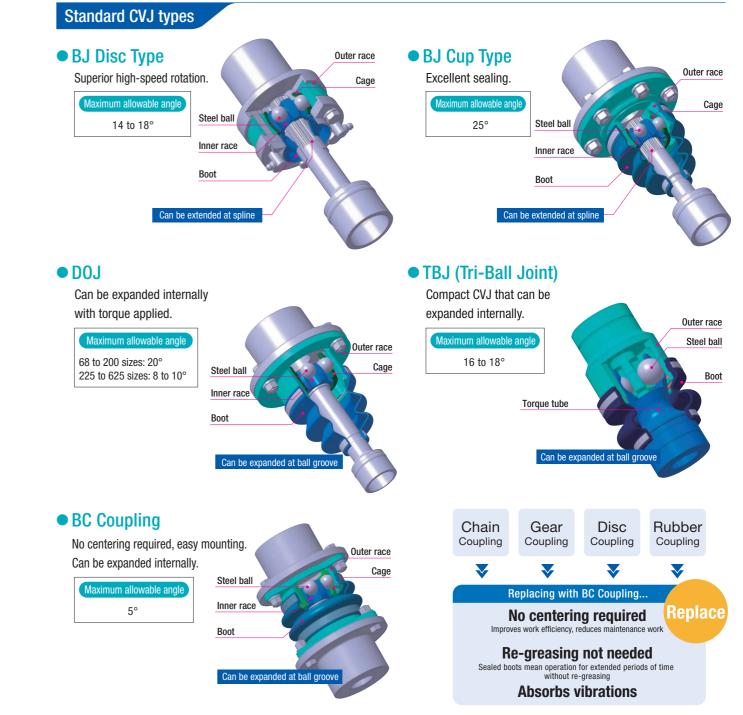
Boots are sealed, which means they can be used for extended periods of time without re-greasing.

The sealed boots prevent grease scattering, helping to keep cleanliness at operating area.

Joints are covered by boots, so users cannot trap their fingers in the joint voke like cross joints, which enhances safety during handling.

Constant velocity

A universal joint is required to connect the two intersecting rotating shafts.


The two intersecting shafts rotating via a universal joint move in two ways even if the main shaft has a constant angular velocity: the angular velocity of the driven shaft changes cyclically per rotation; or the angular velocity is always transmitted constantly without any variation.

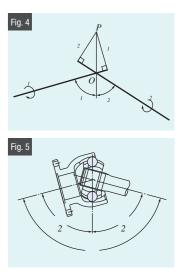

If two intersecting shafts joined by a universal joint are required to rotate such that the driven shaft is always rotating at the same speed as the driving shaft (constant velocity), the intersection point must always be located on a plane that bisects the angle between the two shafts.

Fig.4 schematically illustrates two axes of intersecting shafts, point O is the center of the joint (and the intersection point of the shaft centerlines), point P is the crossing point (that is, power transmission point). When the angular velocities of the axes are 1 and 2 respectively, and the lengths of perpendicular segments from point P to the axes are 1 and ℓ_2 respectively, the peripheral speeds at point P are $_1 \cdot _1$ and $_2 \cdot \ell_2$. Since point P is common to both shafts, both peripheral speeds are the same, and the following relation is valid:

 $1 \cdot 1 = 2 \cdot 2$

If both axes are to run at a common angular velocity (that is, 1 = 2), the relation 1 = 2 must be always true (that is, the lengths of both perpendicular segments the crossing point P to the axes must be always same). This means that point P must be always located on a plane that equally divides the crossed angle between two axes. Based on this principle, NTN constant velocity joints are designed so that, regardless of the crossed angle, the steel balls at the crossing point are always correctly arranged on a plane that equally divides the crossed angle (Fig.5). Therefore, this type of joint can transmit constant velocity.

NTN can select an appropriate CVJ type and size number if details on usage conditions are supplied. Enter the usage conditions into the following Service Condition Confirmation Sheet and contact an **NTN** office.

Company name	Date					
Machine	Areas used					
Service conditions						
• Type of drive motor	Motor: AC/DC Output KW/HP min ⁻¹ Engine: gasoline/diesel No. of cylinders Maximum Power PS/ min ⁻¹ Maximum N·m/ min ⁻¹					
Number of CVJ to be driven per unit	shafts					
CVJ rotating speed	Constant min ⁻¹ Variable to min ⁻¹					
A Rotating direction	One direction · Forward/reverse					
Transmitting torque	Constant N·m Variable Max. to Normal to Min. N·m					
6 Shocks	No Yes Approx. % of rated torque of drive motor					
Ratio of opelation	• 24 hours/day constantly hours/day • Others					
OUJ installation drawing Driving end () Follower end () Key groove width x depth Geprate study required if drawing is not applicable. • I installation position (L and X, Y) changes, check the changed position (amount) and applicable loaded condition at that position.						
Installation direction	• Horizontal • Vertical					
 Expansion, angle changes during torque transmission 	• No • Yes					
Outside diameter limit	• No • Yes up to mm					
Place and atmosphere	Indoor · Outdoor temperature °C Others					
Type and model No. of joint used currently	New · Current					
Other special notes or requirement	S					

