One-way Clutch

1-1 Features ...2
1-2 Operating mechanism4
1-3 Types and construction4
1-4 Selection guidelines5
1-5 Installation precautions7
1-6 Dimensions table <One-way clutch>8
1-7 Dimensions table <One-way clutch units>12
1-8 Product applications
 1-8-1 One-way clutch for fishing reels14
 1-8-2 Personal computer and LCD panel (for hinge) 16
 1-8-3 Clothes dryer (drum rotation mechanism)16
 1-8-4 Industrial sewing machine (cloth feeding section) ...17
 1-8-5 Power-assisted bicycle (drive unit)17
 1-8-6 Clutch incorporated pulley (CIP)18

Two-way Clutch

2-1 Features ..20
2-2 Operating mechanism20
2-3 Provision of multiple functions with a variety of switchover schemes ...20
2-4 Applications
 2-4-1 Roller two-way clutch (friction switchover type) 21
 2-4-2 Mechanical clutch unit (MCU)22

Torque Diode

3-1 Features ..24
3-2 Lock type torque diode (TDL)24
3-3 Free type torque diode (TDF)25
3-4 Swing type torque diode (TDS)26
3-5 Seat lifter clutch (TDLU)27
The one-way clutch only drives in one direction and is idle in the other direction. The drive and idle directions can be switched. NTN has a wide variety of one-way clutches to meet various needs.

1-1 Features

One-way clutch

Stable idle rotation

Because the force of the spring that holds the roller is adjusted accurately, roller movement is slight when idle, so that the idling torque is stable. Please contact NTN if the required idle rotation is fast.

Cross section height is small and the unit is compact

The HF and HFL types have thin external rings made of steel plate that has been made by precision extrusion. This has allowed these shell type one-way clutches to have a low cross section height and compact design.

Simple handling

The one-way clutch series has the clutches press fit tightly into the housing inner diameter, so that there is no need for a fixing device in the axial direction. In addition, torque can be transmitted with this fit alone, thus making handling simple.

No need for a radial load bearing

Because radial load bearings are built into both sides of the clutch unit (HFL type: needle roller with cage; NHF type: oil-impregnated bearing; NCM type: ball bearing), external radial load bearings are not needed. Use the HF type together with a radial load bearing.

Excellent clutch accuracy

Each roller is precisely supported by a spring and they are fabricated with high precision so that they always engage together, thereby achieving excellent clutch accuracy. The delay angle that exists until rotational torque is completely transmitted includes both the sliding angle and the displacement angle that is created by the elastic deformation of the contact section between the rollers, shaft and external ring.

This value will differ depending on the size of the clutch and load torque, but the average value of the delay angle up to the torque capacity (listed in the Dimensions Table) is 3 degrees or less. (Based on NTN measurements.)
One-way Clutch

Compact design possible by using units
This product is comprised of a unit that includes external parts and the one-way clutch. The NCZC type and NCUX type have an even smaller width and allow effective use of space, so that the overall design can be made even more compact.

Resin external parts that can be made to the designated shape
The gears, pulleys, rubber roller receptacles and other external parts are made of resin, and can be made in various shapes and dimensions per your requirements.

Delay angle
The delay angle refers to the difference (θ1 - θ2) between the input shaft rotational angle (θ1) and output shaft rotational angle (θ2). The delay angles of NTN one-way clutch units differ depending on the type and the torque that is applied to the one-way clutches. The figure below shows the general trend. (Based on NTN measurements.)

Service life
Even when torque is applied at the torque capacity in NTN one-way clutch units and the units are engaged over one million times, we have confirmed that there is little change in the delay angle. (Based on NTN measurements.)

High degree of freedom concerning the selection of shafts used
The clutch functions satisfactorily even if the shaft tolerance is large. In addition, shafts can be made from a wide variety of steels. (However, if a softer material is used, the torque capacity will decrease.)

Enhanced torque capacity and improved clutch accuracy
Through incorporation of a metal spring, the NCZ and NCU types boast improved locking functions and idling torque compared with conventional types.

Can be used at high temperatures
The NCZ type does not use any resin parts in the clutch interior. Therefore, it can be used in high temperature conditions (140˚C or less). (However, please consult with NTN if the part is to be used at 100˚C or more.)

Delay angle

![Relations between Load Torque and Delay Angle](image)

Service life

![Changes in Delay Angle Caused by Repeated Operation](image)
Operating mechanism

Clutch engaged
When the outer ring tries to turn clockwise with respect to the shaft, the spring is activated and the rollers advance to the engagement position of the outer ring cam surface, then the wedge action between the outer ring cam surface and shaft drives the shaft.

Clutch idle
When the outer ring turns counterclockwise with respect to the shaft, the shaft turns clockwise with respect to the outer ring, so that the rollers are released from the outer ring cam surface and the outer ring is disengaged from the shaft.

Types and construction

NTN one-way clutches

HF type
- Partially INA products
- The clutch unit is made up of a needle roller, cage and spring. The outer ring is a shell shape that is made by precision extrusion of thin steel plate. As a radial load, use NTN BEARPHITE oil-impregnated bearings or shell-type needle roller bearings.

HFL type
- INA products
- The HF type has needle rollers with cages built into both sides for radial loads.

NHF type
- The clutch unit is made up of a needle roller, cage and spring. The outer ring is a solid unit with NTN BEARPHITE oil-impregnated bearings built into both sides for radial loads.

NCM type
- The NCM type is a ball bearing-shaped one-way clutch that has a built-in locking sprag and load-carrying balls. The color coding with the right and left seals allows the user to identify the locking direction.

One-way clutches

One-way clutch units

NCU type
- The main unit is made up of an outer ring, lid, roller, cage and spring. The outside has resin external parts including a gear, pulley and roller receptacle to make up the unit.

NCZ type
- The main unit is made up of an outer ring with cage, lid, roller and steel single piece ring spring. The outside has resin external parts including a gear, pulley and roller receptacle to make up the unit.

NCZX type
- The outer diameter dimension has been made as small as possible in order to cope with the need for smaller units. The outside has resin external parts including a gear, pulley and roller receptacle to make up the unit.

NCUX type
- The width has been made as small as possible in order to cope with the need for smaller units.
Selection guidelines

Lubrication

Oil lubrication is best for these one-way clutches, but, in general, grease lubrication is usually used. NTN one-way clutches are filled with suitable grease, so that they can be installed immediately. In general use there is no need to resupply grease; however, if grease is resupplied, note that too much grease can interfere with clutch operation. Please consult with NTN for the type of lubricant to use.

Engagement direction

- **HF** type, **HFL** type
 - The NHF type has an arrow (→) on the outer diameter surface or oil-impregnated bearing edge, and the HF type and HFL type have arrows on the outer ring sides. Turning the outer ring in the direction of the arrow will engage the clutch.

- **NCU** type, **NCZ** type, **NCZC** type, **NCZX** type, **NCUX** type
 - Turning the external resin part in the direction of the arrow (→) on the side of the external resin part will engage the clutch.

- **NCM** type
 - The right and left seals being incorporated into the clutch are each uniquely color-coded, allowing the user to be sure of the locking direction of the clutch.

Allowable operating temperature

- **HF** type, **HFL** type
 - Oil lubricant: −10°C to 120°C
 - Grease lubricant: −10°C to 70°C

- **NHF** type
 - −10°C to 100°C

- **NCF** type, **NCUX** type
 - −10°C to 100°C

- **NCZ** type, **NCZC** type, **NCZX** type
 - −10°C to 140°C

- **NCM** type
 - −10°C to 70°C

Please consult with NTN when using these units outside their allowable operating temperatures or when using the NCZ type at over 100°C.

Selection precautions

- **HF** type, **HFL** type, **NHF** type
 - NTN checks the functions of its one-way clutches under many different test conditions. However, the service life may be reduced if they are used with heavy load torques, high oscillation cycles or minute oscillations, if the shaft is not hard, and if a large radial load acts on the one-way clutch unit.
 - In addition, if the idling rotational speed is high or the clutch is used often in idle, there is a possibility that lock problems might occur.

Please consult with NTN when using these units under these special conditions.
One-way Clutch

Shaft and housing \((HF_{type}, HFL_{type}, NHF_{type}) / external resin parts \((NCU_{type}, NCZ_{type}, NCZC_{type}, NCZX_{type}, NCUX_{type})\) specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>One-way clutch</th>
<th>One-way clutch unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(HF_{type})</td>
<td>(HFL_{type})</td>
<td>(NHF_{type})</td>
</tr>
<tr>
<td>Material</td>
<td>Tempered steel, case hardened steel (Hardness HRC58–64, effective depth 0.4 mm or greater for carburizing)</td>
<td>Carbon steel, stainless steel, tempered steel, case hardened steel (Surface hardness if tempered: HRC50 or greater)</td>
</tr>
<tr>
<td>Dimensions Tolerance</td>
<td>(h5(h6))</td>
<td>(h7)</td>
</tr>
<tr>
<td>Cylindricality</td>
<td>One-half of tolerance</td>
<td>One-half of tolerance</td>
</tr>
<tr>
<td>Roughness</td>
<td>0.2a (Ra)</td>
<td>0.4a (Ra)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Material</th>
<th>Bore Tolerance</th>
<th>Cylindricality</th>
<th>Roughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>(HFL_{type})</td>
<td>Steel, light metal alloys</td>
<td>Steel: N6 (N7) light metal alloys: R6 (R7)</td>
<td>One-half of tolerance</td>
<td>1.6a</td>
</tr>
<tr>
<td>(NHF_{type})</td>
<td></td>
<td></td>
<td>One-half of tolerance</td>
<td>1.6a</td>
</tr>
</tbody>
</table>

Remarks

1) Round off the tip of the shaft to facilitate insertion into the one-way clutch. (Minimum 0.3 mm)
2) The requirements for the shaft and housing for the NCM type one-way clutch can vary depending on the operating conditions.

Contact NTN Engineering for technical assistance.
Installation precautions

Use of a press-fitting mandrel as shown in the figure is convenient for installing a one-way clutch. When installing an HF type or HFL type, be sure that the side with the mark comes into contact with the mandrel when press fitting. In addition, when installing the NHF type, be sure to press fit the outer ring and use a jig to avoid pressing the oil-impregnated bearing section. Precautions for assembly include not twisting the outer ring, not directly striking the outer ring with a hammer, and using an appropriate jig on the outer ring side when press fitting. When assembling in a press for mass production, using a mandrel with an O-ring as shown in the figure will prevent the one-way clutch from falling off and facilitate insertion.

The dimensions of the mandrel are shown below.

\[A = D - (0.2 \text{ to } 0.3) \text{ mm (in the case of NHF, } A \text{ is greater than } D) \]
\[B = d \text{ or } F_w - (0 \text{ to } 0.025) \text{ mm} \]

- \(D \): Outer diameter of the one-way clutch, mm
- \(d \): Bore of the oil-impregnated bearing, mm
- \(F_w \): Inscribed circle diameter of the roller, mm

(See the dimensions table)

Shaft assembly can be facilitated by turning the shaft in the direction that the clutch is disengaged. If the shaft cannot be turned during installation, installation can be facilitated by attaching a tapered guide (chamfered) to the end of the shaft.

When installing or removing the one-way clutch or one-way clutch unit, turn the gear in the direction of the arrow in the figure (idle direction) to prevent damaging the shaft.

Handling precautions

Be very careful not to subject the one-way clutch to a severe impact such as a shock resulting from falling.
Dimensions table

HF type

<table>
<thead>
<tr>
<th>Shaft diameter mm</th>
<th>Clutch number</th>
<th>Dimensions mm</th>
<th>Torque capacity N·m [kgf·cm]</th>
<th>Mass g (Reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HF0612</td>
<td>F_w 6</td>
<td>D 10</td>
<td>$C_{0.25}$ 12.0</td>
</tr>
<tr>
<td>8</td>
<td>HF0812</td>
<td>F_w 8</td>
<td>D 12</td>
<td>$C_{0.25}$ 12.0</td>
</tr>
<tr>
<td>10</td>
<td>HF1012</td>
<td>F_w 10</td>
<td>D 14</td>
<td>$C_{0.25}$ 12.0</td>
</tr>
<tr>
<td>12</td>
<td>HF1216</td>
<td>F_w 12</td>
<td>D 18</td>
<td>$C_{0.25}$ 16.0</td>
</tr>
<tr>
<td>14</td>
<td>HF1416</td>
<td>F_w 14</td>
<td>D 20</td>
<td>$C_{0.25}$ 16.0</td>
</tr>
<tr>
<td>16</td>
<td>HF1616</td>
<td>F_w 16</td>
<td>D 22</td>
<td>$C_{0.25}$ 16.0</td>
</tr>
<tr>
<td>18</td>
<td>HF1816</td>
<td>F_w 18</td>
<td>D 24</td>
<td>$C_{0.25}$ 16.0</td>
</tr>
<tr>
<td>20</td>
<td>HF2016</td>
<td>F_w 20</td>
<td>D 26</td>
<td>$C_{0.25}$ 16.0</td>
</tr>
<tr>
<td>25</td>
<td>HF2520</td>
<td>F_w 25</td>
<td>D 32</td>
<td>$C_{0.25}$ 20.0</td>
</tr>
<tr>
<td>30</td>
<td>HF3020</td>
<td>F_w 30</td>
<td>D 37</td>
<td>$C_{0.25}$ 20.0</td>
</tr>
<tr>
<td>35</td>
<td>HF3520</td>
<td>F_w 35</td>
<td>D 42</td>
<td>$C_{0.25}$ 20.0</td>
</tr>
</tbody>
</table>
HF type radial load bearing

Select by referring to the bearings in the table below.

![NTN shell-type needle roller bearing (HK type)](image)

![NTN BEARPHITE oil-impregnated bearing](image)

<table>
<thead>
<tr>
<th>Shaft diameter (mm)</th>
<th>One-way clutch number</th>
<th>NTN shell-shaped needle roller bearing (HK type)</th>
<th>NTN BEARPHITE oil-impregnated bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bearing number</td>
<td>Dimensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>6</td>
<td>HF0612</td>
<td>HK0609T2</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>HF0812</td>
<td>HK0810C</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>HF1012</td>
<td>HK1010</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>HF1216</td>
<td>HK1212</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>HF1416</td>
<td>HK1412</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>HF1616</td>
<td>HK1612</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>HF1816</td>
<td>HK1812</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>HF2016</td>
<td>HK2016C</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>HF2520</td>
<td>HK2516</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>HF3020</td>
<td>HK3012</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>HF3520</td>
<td>HK3512</td>
<td>35</td>
</tr>
</tbody>
</table>

NTN shell-shaped needle roller bearings include the closed end type (BK type) in addition to the open end type (HK type) listed above. In addition, there are HK and BK types with seals (single seal or double seal). Refer to the special catalog "Needle Roller Bearings" for the features and assembly guidelines for shell-type needle roller bearings.

NTN BEARPHITE oil-impregnated bearings are designed for an ideal radial clearance with the housing and shaft tolerances recommended on page 6. If the width l of the **NTN BEARPHITE** oil-impregnated bearing is a problem due to the available space, please consult with **NTN**. Refer to the special catalog "**NTN BEARPHITE** Oil-impregnated Bearings" for the features, loads, rotational speeds and installation dimensions of oil-impregnated bearings.
Dimensions Table (One-way clutch)

HFL Type

<table>
<thead>
<tr>
<th>Shaft Diameter mm</th>
<th>Clutch number</th>
<th>Dimensions mm</th>
<th>Torque capacity N·m [kgf·cm]</th>
<th>Basic rated load N [kgf]</th>
<th>Mass (Reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>HFL0822</td>
<td>8 12 22</td>
<td>3.15</td>
<td>32</td>
<td>4 050</td>
</tr>
<tr>
<td>10</td>
<td>HFL1022</td>
<td>10 14 22</td>
<td>5.30</td>
<td>54</td>
<td>4 300</td>
</tr>
<tr>
<td>12</td>
<td>HFL1226</td>
<td>12 18 26</td>
<td>12.2</td>
<td>124</td>
<td>6 300</td>
</tr>
<tr>
<td>14</td>
<td>HFL1426</td>
<td>14 20 26</td>
<td>17.3</td>
<td>178</td>
<td>7 100</td>
</tr>
<tr>
<td>16</td>
<td>HFL1626</td>
<td>16 22 26</td>
<td>20.5</td>
<td>209</td>
<td>7 300</td>
</tr>
<tr>
<td>18</td>
<td>HFL1826</td>
<td>18 24 26</td>
<td>24.1</td>
<td>246</td>
<td>8 300</td>
</tr>
<tr>
<td>20</td>
<td>HFL2026</td>
<td>20 26 26</td>
<td>28.5</td>
<td>291</td>
<td>8 200</td>
</tr>
<tr>
<td>25</td>
<td>HFL2530</td>
<td>25 32 30</td>
<td>66.0</td>
<td>673</td>
<td>10 900</td>
</tr>
<tr>
<td>30</td>
<td>HFL3030</td>
<td>30 37 30</td>
<td>90.0</td>
<td>918</td>
<td>12 600</td>
</tr>
<tr>
<td>35</td>
<td>HFL3530</td>
<td>35 42 30</td>
<td>121.0</td>
<td>1230</td>
<td>13 000</td>
</tr>
</tbody>
</table>
NHF_{type}

![Diagram of Clutch](image)

<table>
<thead>
<tr>
<th>Shaft diameter mm</th>
<th>Clutch number</th>
<th>Clutch number</th>
<th>Dimensions mm</th>
<th>Torque capacity N·m [kgf·cm]</th>
<th>Mass g (Reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NHF04</td>
<td>d</td>
<td>$D_{+0.020}$</td>
<td>(D_1)</td>
<td>$C_{-0.200}$</td>
</tr>
<tr>
<td>6</td>
<td>NHF06</td>
<td>d</td>
<td>$D_{+0.020}$</td>
<td>(D_1)</td>
<td>$C_{-0.200}$</td>
</tr>
<tr>
<td>8</td>
<td>NHF08</td>
<td>d</td>
<td>$D_{+0.020}$</td>
<td>(D_1)</td>
<td>$C_{-0.200}$</td>
</tr>
<tr>
<td>10</td>
<td>NHF10</td>
<td>d</td>
<td>$D_{+0.020}$</td>
<td>(D_1)</td>
<td>$C_{-0.200}$</td>
</tr>
<tr>
<td>12</td>
<td>NHF12</td>
<td>d</td>
<td>$D_{+0.020}$</td>
<td>(D_1)</td>
<td>$C_{-0.200}$</td>
</tr>
</tbody>
</table>
Dimensions table (One-way clutch units)

Ncu type, **NCZ** type, **NCZC** type (Standard Width Models)

The torque capacity is based on the NTN standard test conditions.

- Oscillation angle: 10 degrees
- Oscillation cycle: 300 cpm, 10^6 times
- Shaft used: SUJ2, tempered
- Dimension tolerance: h7

Table

<table>
<thead>
<tr>
<th>Shaft diameter mm</th>
<th>Clutch number</th>
<th>Dimensions mm</th>
<th>Torque capacity $N\cdot m$ (kgf cm)</th>
<th>Idling torque $mN\cdot m$ (gf cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NCU 4</td>
<td>d_1 $0.10^{+0.02}$ $0.10^{+0.02}$</td>
<td>12 min. 9min.</td>
<td>0.20 [2] 2.94 [30]</td>
</tr>
<tr>
<td>6</td>
<td>NCZ 6</td>
<td>d_1 $0.10^{+0.02}$ $0.10^{+0.02}$</td>
<td>13.5 min. 8min.</td>
<td>0.49 [5] 3.43 [35]</td>
</tr>
<tr>
<td></td>
<td>NCZC 6</td>
<td>d_1 $0.10^{+0.02}$ $0.10^{+0.02}$</td>
<td>13 min. 8min.</td>
<td>0.20 [2] 3.43 [35]</td>
</tr>
<tr>
<td>8</td>
<td>NCZ 8</td>
<td>d_1 $0.10^{+0.02}$ $0.10^{+0.02}$</td>
<td>16 min. 8min.</td>
<td>0.78 [8] 4.90 [50]</td>
</tr>
<tr>
<td>10</td>
<td>NCU10</td>
<td>d_1 $0.10^{+0.02}$ $0.10^{+0.02}$</td>
<td>20 min. 10min.</td>
<td>0.88 [9] 4.90 [50]</td>
</tr>
</tbody>
</table>

The idling torque is the value when radial torque is not applied.

Note: Dimensions are given in millimeters.
One-way Clutch

NCZX type, NCUX type (Narrow Width Products)

![Diagram of one-way clutch](image)

<table>
<thead>
<tr>
<th>Shaft diameter mm</th>
<th>Clutch number</th>
<th>Dimensions mm</th>
<th>Torque capacity(^1) N·m (kgf·cm)</th>
<th>Idling torque(^2) mN·m (gf·cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(d_1)</td>
<td>(d_2)</td>
<td>(D)</td>
</tr>
<tr>
<td>4</td>
<td>NCUX 4</td>
<td>4 (\pm 0.10)</td>
<td>4 (\pm 0.02)</td>
<td>11.5min.</td>
</tr>
<tr>
<td>6</td>
<td>NCZX 6</td>
<td>6 (\pm 0.10)</td>
<td>6 (\pm 0.02)</td>
<td>13.5min.</td>
</tr>
<tr>
<td>8</td>
<td>NCZX 8</td>
<td>8 (\pm 0.10)</td>
<td>8 (\pm 0.02)</td>
<td>16 min.</td>
</tr>
</tbody>
</table>

\(^1\)The torque capacity is based on the NTN standard test conditions.
\(^2\)Idling torque is the value when radial torque is not applied.
Oscillation angle: 10 degrees
Oscillation cycle: 300 cpm, 10\(^{th}\) times
Shaft used: SUJ2, tempered
Dimension tolerance: h7
1-8 Product applications

1-8-1 One-way clutch for fishing reels

[Explanation]
Double-ender fishing reels incorporate an anti-reverse mechanism for their handle. To satisfy the needs from high-end anglers, this type of anti-reverse mechanisms has been increasingly incorporating a roller-type one-way clutch so that each angler can enjoy the delicate feeling of the reel and promptly respond to a quick bite by fish. To be able to improve the feeling with the reel, the NTN one-way clutch boasts achievement of higher balance between two conflicting basic requirements: reliable locking function and lower idling torque. The NTN one-way clutch for this purpose features reliable corrosion-resistance since it comprises stainless steel components and plated parts.

[Features of one-way clutch for finishing reel]

1. Excellent rust-resistance quality
 Fishing reels are often stored without removing seawater on them. As a result, rust can quickly occur on them, leading to a malfunctioning clutch. With the NTN one-way clutches for fishing reel, their outer ring is plated, the rollers and springs are made of stainless steel and the cage is composed of a resin. Thus, they offer excellent rust-resistance quality, and maintain reliable clutch function even under very severe operating conditions such as an environment filled with saltwater mist.

2. Reliable clutch function
 The NTN one-way clutch for fishing reel employs a stainless steel spring. This feature allows the one-way clutch to be reliably locked even in a cold climate (no problem has occurred at -20°C: bench test by NTN, see *1).

3. Low idling torque
 Use of a specially shaped spring ensures a low idling torque (approx. 50% compared with conventional one-way clutch). This feature leads to realization of higher balance between two conflicting basic requirements: reliable locking function and lower idling torque.

4. Compact size & high load-carrying capacity
 Because being held by the hand of angler for a prolonged time, a fishing reel has to be very light and compact. So that a compact fishing reel, when locked, can maintain a sufficiently great torque capacity, it needs to employ a highly rigid one-way clutch. The outer ring of the NTN one-way clutch for fishing reel is manufactured through a drawing process rather than a conventional press process, and, therefore, the one-way clutch boasts a compact construction and higher rigidity.

5. Easy assembly
 The outer circumference of the outer ring can be formed into a special shape. Then, by simply inserting the one-way clutch into the housing whose inner surface conforms to the outer surface of the outer ring, the one-way clutch is fixed into position to prevent undesirable rotation.
[Example of fishing reel construction]

Double-ender type with one-way clutch

Employing a stainless steel spring rather than a resin spring, the NTN one-way clutch excels in locking performance, in particular, under a low-temperature condition.

[Experimental data] *1 Comparison in locking performance under simulated cold climate (-20˚C)

[Dimensions table for NTN one-way clutches]

<table>
<thead>
<tr>
<th>Product name</th>
<th>Dimensions</th>
<th>Torque capacity (N·m)</th>
<th>Idling torque (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFX10X17.1X8-2/0G</td>
<td>d=10, D=17.1, C=16, B=8</td>
<td>3.0</td>
<td>2.5×10⁻⁶ max.</td>
</tr>
<tr>
<td>HFX10X17.1X12/0G</td>
<td>d=10, D=17.1, C=16, B=12</td>
<td>5.3</td>
<td>2.5×10⁻⁵ max.</td>
</tr>
</tbody>
</table>

*2 The idling torque values are obtained from use of the NTN recommended shaft diameter \(d = 9.955 \pm 0.005 \).
1-8-2 Personal computer and LCD panel (for hinge)

[Operation of one-way clutch]
- In a normal operating condition, the one-way clutch remains in the locked mode and the weight of the display is stably supported.
- When intending to swing down the display, the user will exert a torque (force) greater than the allowable torque on the torque limiter (though the clutch remains locked), and, as a result, the torque limiter will slip, causing the display to lower.
- When the user attempts to swing up the display, the clutch will idle, allowing the user to smoothly swing up the display with a very light force.

1-8-3 Clothes dryer (drum rotation mechanism)

The one-way clutch is built into the pulley for drum drive belt.

[Operation of one-way clutch]
- When the drum and fan are running: the clutch is locked to drive the drum.
- When the fan alone is running (the drum is at a standstill): the clutch idles and does not transmit power to the drum.
1-8-4 Industrial sewing machine (cloth feeding section)

On industrial sewing machines, an NTN one-way clutch is incorporated into a roller that intermittently feeds a piece of cloth, being timed with the upward / downward motion of the needle.

[Operation of one-way clutch]
- The clutch shaft swings via the link. The installed clutch is oriented such that when the clutch shaft is turned clockwise, the clutch is locked; when the shaft is turned counterclockwise, the clutch idles.
- When the shaft is turned clockwise, the clutch is locked, and the upper roller rotates in conjunction with the shaft, thereby the cloth is fed along the arrow direction.
- When the shaft is turned counterclockwise, the clutch idles, and the upper roller remains at a standstill. As a result, the cloth is not fed.
- The shaft repeatedly swings and the above-mentioned cycle is repeated, thereby the cloth is fed intermittently.

1-8-5 Power-assisted bicycle (drive unit)

The driving power from the motor is transmitted to the chain via the one-way clutch. As a result, the rider’s power required for the pedals is reduced.

[Operation of one-way clutch]
- When the motor is running (assist function is ON):
 The rotary output from the motor acts on the one-way clutch via the reduction gearing, causing the clutch to engage. As a result of this engagement, the drive force is transmitted from the clutch shaft, the sprocket and then to the chain.
- When the motor is not running (assist function is OFF):
 The clutch, which drives the chain, remains disengaged, while the clutch shaft receives the driving force from the chain.
1-8-6 Clutch incorporated pulley (CIP)

[Product overview]
The pulley of an auxiliary device of a greater rotating inertia may incorporate a one-way clutch to mitigate the variation in belt tension and/or suppress the belt slip noise. This type of pulley is known as "clutch incorporated pulley".

- Longer life for drive belt
- Prevention of vibration on drive belt
- Reduction of belt tension variation
- Suppression of belt slip noise

[Features]
- Benefits with sprag-type one-way clutch
 - Compact design
 - Greater torque capacity
- Benefits with a construction comprising two rows of deep groove ball bearings
 - Increased radial load capacity
 - Increased moment load capacity

[Construction]

Shaft speed < outer ring speed
The shaft remains engaged with the outer ring.

Shaft speed > outer ring speed
The shaft slips relative to the outer ring.

Joint development work in cooperation with Bando Chemical Industries, Ltd.
[Operating principle]

If an engine with greater speed variation drives a mechanism of a greater rotary inertia (alternator, etc.), greater tension variation occurs on the drive belt, possibly rendering the service life of the drive belt shorter.

To address this problem, **NTN** has attempted to incorporate a one-way clutch into a pulley to absorb speed variation and reduce belt tension variation in order to achieve a longer belt life.

[Recommended applications]

- Automotive auxiliary devices (alternator, etc.)
- Idling stop mechanism

[Engineering data]

Use of fixed pulley (no clutch)

Use of clutch incorporated pulley
2-1 Features

In contrast to one-way clutches which can drive in one direction only, any two-way clutch is capable of switchover between drive and idle modes in both directions.

For a situation where the user wants to transmit a torque in both forward and reverse directions, a two-way clutch may be employed. Consequently, use of a combination of complicated switching mechanisms is no longer necessary; and this advantage leads to simplification and compact size of a transmission mechanism, as well as to a lower cost.

2-2 Operating mechanism

The NTN two-way clutch comprises, as illustrated below, a regular polygon cam that is capable of driving in both directions, wherein each cam face aligns with a roller. By switching the phase of the cage relative to the phase of the cam face, the clutch can be arbitrarily switched to the neutral-idling state, forward-driving state and reverse-driving state.

2-3 Provision of multiple functions with a variety of switchover schemes

The NTN two-way clutch line of products address specific needs of customer, and the examples include a roller two-way clutch (friction switchover type) with which the driving direction is automatically selected to cope with the running direction of the input shaft; and a mechanical clutch unit (MCU) with which the operating mode is electrically selected from an external controller.
Section 2

2-4 Applications

2-4-1 Roller two-way clutch (friction switchover type)

[Explanation]
The operating direction of this type of clutch is automatically selected based on the rotating direction on the input side.

[Features]
1. Lower idling torque
2. Greater torque capacity and compact size
3. Pure-mechanical switchover system that does not need a special control device

[Construction]

[Operating principle]
1. One end of the switching plate is fixed to the static system while the switching plate is held to the cage by the force of wavy spring. As a result, a resistance opposite to the rotating direction of the input shaft is exerted to the cage.
2. When revolution is transmitted to the input shaft, there will occur a speed difference between the input shaft and cage.
3. Consequently, within the two-way clutch, the rollers come into contact with the input shaft and output outer ring by the force of the leaf springs installed in the cage pockets, thereby the two-way clutch is ready for driving operation.
4. When the input shaft speed N_i>output outer ring speed N_o, the rollers are forced into the wedge-shaped spaces formed between the input shaft and the output outer ring, allowing the torque from the input shaft to be transmitted to the output outer ring. (See Fig. 1.)
5. When the input shaft speed $N_i<$output outer ring speed N_o, the rollers leave the wedge shaped spaces, allowing the output outer ring to idle.
6. When the input shaft rotates in the reverse direction, the operation described above occurs in the opposite direction because the clutch is axisymmetric.

[Recommended application]
- Switchover of power transmission on drive system

Fig. 1 Torque transmission (red arrow indicates the torque flow)

Fig. 2 Variation in clutch interior configuration depending on input shaft rotating direction
Section 2

Two-way Clutch

2-4-2 Mechanical clutch unit (MCU)

[Explanation]
The NTN mechanical clutch unit consists of a mechanical roller clutch and an electromagnet clutch to realize both greater transmission torque capacity and easy control.

[Features]
1. Lower idling torque
2. Greater torque capacity and compact size
3. Excellent response owing to electrical control
4. No slippage transmitting torque: longer life
5. Simple construction that incorporates both roller 2WC and electromagnetic clutch

[Construction]

[Engineering data]
The response speed varies somewhat depending on the operating temperature. However, the response time always remains not greater than 100 ms, which means excellent response speed1) (see the chart in the right: under oil lubrication).

NOTE 1) Response speed is expressed as response time from a timing where electricity is supplied to the electromagnet to a timing where the MCU begins to transmit the torque.
[Operating principle]
The electromagnet is powered ON/OFF to change the phase relation between the rollers and input shaft (cam) so as to engage/disengage the roller clutch, thereby switchover between the drive mode and idle mode is achieved.

While the electromagnet is not powered, there are gaps between the rollers and output outer ring, thereby the output outer ring (or the input shaft) can freely idle.

When the electromagnet is powered, the rollers fit into the "wedge-shaped" spaces formed between the output outer ring and input shaft (cam), causing the outer ring to be engaged with the cam, thereby the physical power is transmitted.

[Specification]
The engineering data for the prototypes already fabricated are summarized in the right.

NOTE 3) The prototypes summarized in this table have been developed per specifications of particular customers. NTN will develop and supply a newly designed product per the specification of each customer.

<table>
<thead>
<tr>
<th>No.</th>
<th>Boundary dimensions (outer dia. × entire length)</th>
<th>Rating torque (N·m)</th>
<th>Current consumption (A) @12 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>φ73 × 65</td>
<td>150</td>
<td>1.4</td>
</tr>
<tr>
<td>2</td>
<td>φ82 × 100</td>
<td>530</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>φ104 × 100</td>
<td>1020</td>
<td>4.2</td>
</tr>
</tbody>
</table>

NOTE 4) Rating torque: Torque under which the clutch can withstand 10^6 loadings.

[Recommended application]
- Switchover between 2WD and 4WD modes for 4WD cars
- Switchover between power sources for hybrid cars
- The NTN two-way clutches can be widely applied for other power transmission/interruption for input/output based on current control by an external control device.
3-1 Features

Precaution: When considering an application that uses a torque diode, contact NTN Engineering for technical assistance.

- If the input shaft is rotated, the output shaft also rotates.
- The output shaft cannot cause the input shaft to rotate.

The following is a description of the lock type, free type, swing type, their features and their operating principles.

3-2 Lock type torque diode (TDL)

[Features]
- When the input shaft is rotated, the output shaft also rotates.
- When the output shaft is rotated, the output side is locked and movement is not transmitted to the input shaft.

[Construction]

[Operating principle]

* Dimensions and/or shape may somewhat vary from those of an actual product.

Fig. 1 Initial State (Forward/Reverse Locked)
Unless there is drive from the input shaft, the roller locks the output shaft in both forward and reverse.

Fig. 2 Cage Rotation (Engagement Released)
When the input shaft (connected to the cage) is turned, the cage kicks out the roller from the cam side and releases the lock.

Fig. 3 Output Shaft Rotation
The cage rotates further, and the cage protrusion comes into contact with the output shaft hole, thereby turning the output shaft.

[Engineering data]
TDL28 specification
Allowed load torque: 4.9 N·m

[Uses]
Devices to prevent reverse input, drop-off preventing mechanism, geared motors, etc.
Free type torque diode (TDF)

[Features]
- When the input shaft is rotated, the output shaft also rotates.
- When the output shaft is rotated, it will rotate freely, but the movement is not transmitted to the input shaft.

[Construction]

![Diagram of the Free type torque diode (TDF)](image)

[Engineering data]
- TDF18 specification
- Allowed load torque: 4.9 N·m

[Uses]
- Devices to prevent reverse input, automatic/manual switching mechanisms, geared motors, etc.

Fig. 1 Initial State (Free Forward/Reverse Rotation)
If there is no drive from the input shaft, the centering spring causes the roller to position itself at the center of the outer ring cam surface. Because there is a gap between the roller and inner ring, they are not locked and the output shaft is free to rotate.

Fig. 2 Input/Output Shafts Locked
When the input shaft is rotated, the resistance from the switching spring causes the roller to lock with the inner and outer rings, and rotation is transmitted to the output shaft.
3-4 Swing type torque diode (TDS)

[Features]
- By moving the input shaft from the neutral position to the swinging rotation mode, the output shaft will rotate.
- When the output shaft is rotated, it will rotate freely, but the movement is not transmitted to the input shaft.

[Construction]

[Operating principle]

Fig. 1 Initial State
If there is no drive from the input shaft, the centering spring causes the roller to position itself at the center of the outer ring cam surface. Because there is a gap between the roller and inner ring, they are not locked and the output shaft is free to rotate.

Fig. 2 Output Shaft Rotation
When the input shaft (outer ring) is turned, the rollers come into contact with the corresponding cam faces to lock the output shaft, causing the output shaft to rotate.

Fig. 3 Returning to the neutral state
When the input shaft (outer ring) is not turned any more, the rollers and input shaft (outer ring) will return to their neutral state owing to the restoring force of the centering spring.

[Engineering data]
TDS26 specification Allowed load torque: 29.4 N·m

[Uses]
Input mechanisms on lock-type and free-type torque diode systems.
3-5 Torque diode incorporated product: Seat lifter clutch (TDLU)

[Explanation]
The NTN seat lifter clutch incorporates both a lock-type torque diode (see page 24) and a swing-type torque diode (see page 26).

[Features]
1. Compact size
2. Invariable seat height adjustment
3. Smaller lever actuation force
4. Quiet operation

[Construction]

![Diagram of Seat lifter clutch (TDLU)]

Specification
Size: OD \(\times 51 \) W
Braking force: 80 Nm
[Operating principle]
The seat lifter mechanism allows the cushion of automotive seat to lift up/down and supports the load on the cushion.
- The diagram on the left summarizes the flow of power when the cushion is lifted up/down.
- The diagram on the right shows the flow of power when the load on the cushion is supported.

[Applicable section]
The clutch is fixed to the seat skeleton on the side of seat cushion, while a lever is provided on the input section of the clutch. This lever is actuated to lift up/down the seat cushion.