

The ULTAGE™ series deep groove ball bearings for high-speed servo motors [MA type] are products with an optimized internal design for high-speed servo motors. These bearings have improved durability and longer grease life for high-speed operation and rapid acceleration/ deceleration.

1. Features

1) High speed and high reliability

Deformation from high-speed operation is reduced and limiting speeds of $d_{\rm m}n$ value 1 million are achieved by using high performance cages. These cages are made of self-lubricating resin and have interlocking tabs for high rigidity (see Fig. 1).

* dmn value:

 d_{m} (rolling element pitch diameter mm) \times n (rotational speed min⁻¹)

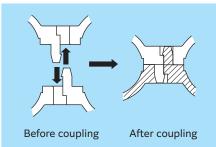


Fig.1 MA resin cage

2) Longer grease life

Outer ring grease pockets designed to maintain grease near the rolling elements improve lubrication reliability. In addition, long-life grease for motors "ME-1" [refer to Table 11.6 (A-116)] is applied for the initial grease fill.

(Longer life of five times or more is achieved compared with the lithium-based grease used for general purposes.)

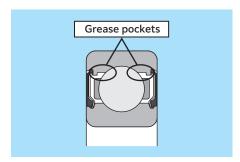
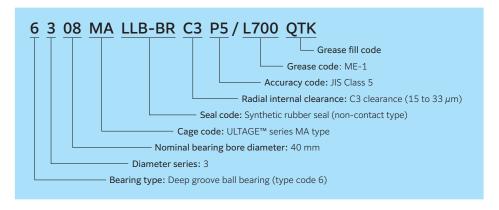


Fig. 2 Grease pockets


3) Low noise

An MA resin cage allows for low noise operation. The noise is reduced by 3 dBA with respect to pressed steel cages.

Table 1 Measurement result of noise values

Specification	Noise value
Pressed steel cage	57 dBA
MA resin cage	54 dBA

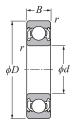
2. Part number

3. Allowable temperature range

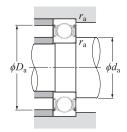
-20 to 120 °C

4. Allowable speed

The allowable speed refers to a rotational speed of the bearing based on:


- Maximum outer ring temperature of 80 °C
- Standard ME-1 grease filled to a fill volume of 15 to 20 % of the free space.
- Spring preload is applied to the bearing.
- Bearing operation at room temperature after break-in procedure.

The bearing temperature increase differs depending on the usage condition (operating load, environmental temperature, rotational speed pattern, etc.); therefore, the bearings must be selected with sufficient allowable speed as specified in the catalog.


If the bearing will continuously operate above 80 % of the allowable speed listed in the bearing dimension tables, please consult **NTN** Engineering.

C-14 C-15

Shielded type (ZZ)

Non-contact sealed type (LLB)

Boundary dimensions				Basic load rating		Fatigue load	Factor Allowable sp min ⁻¹		Bearing number	
mm				dynamic	static	limit		Grease		
				kl		kN		lubrication		Non-contact
d	D	B	$r_{\rm s min}^{1)}$	$C_{\rm r}$	C_{0r}	C_{u}	f_0	ZZ, LLB	Shielded type	sealed type
40	90	23	1.5	45.0	24.0	1.83	13.2	15 400	6308MAZZ	6308MALLB
45	85	19	1.1	36.0	20.4	1.60	14.1	14 300	6209MAZZ	6209MALLB
50	90	20	1.1	39.0	23.2	1.82	14.4	15 400	6210MAZZ	6210MALLB
30	110	27	2	68.5	38.5	2.99	13.2	12 200	6310MAZZ	6310MALLB
60	130	31	2.1	90.5	52.0	4.10	13.2	10 500	6312MAZZ	6312MALLB

Dynamic equivalent radial load $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$

$f_0 \cdot F_a$		$\frac{F_a}{F}$	<u></u>	$\frac{F_a}{F} > e$		
C_{0r}	е	$\frac{F_{\rm r}}{X}$	Y	X	Y	
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00	

Static equivalent radial load $P_{0r} = 0.6F_r + 0.5F_a$ When $P_{0r} < F_r$ use $P_{0r} = F_r$.

Inst	Mass						
	mm D						
Min.	a Max.	$D_{ m a}$ Max.	$r_{ m as}$ Max.	(approx.)			
48	54	82	1.5	0.634			
51.5	55.5	78.5	1	0.398			
56.5	60	83.5	1	0.454			
59	68.5	101	2	1.07			
71	80.5	119	2	1.73			