7. Bearing fits

7.1 Resultant fits

For rolling bearings, it is necessary to fix inner and outer rings on the shaft or in the housing so that relative movement does not occur between fitting surfaces during operation or under load. This relative movement between the mating surfaces of the bearing and the shaft or housing can occur in a radial direction, an axial direction, or in the direction of rotation. Types of resultant fit include tight, transition and loose fits, which describe whether or not there is interference between the bearing and the shaft or housing. It is also necessary to select a reliable axial fixing method such as tightening nuts, bolts, retaining rings, etc. For more information on fixing of bearings, see section "14.1 Fixing of bearings".

The most effective way to fix the mating surfaces between a bearing and shaft or housing is to apply a "tight fit". The advantage of a tight fit for thin walled bearings is that it provides uniform load support over the entire ring circumference without any loss of load carrying capacity. However, with a tight fit, ease of installation and disassembly is lost; and when using a non-separable bearing as the floating-side bearing, axial displacement is not possible. For this reason, a tight fit cannot be recommended in all cases.

7.2 The necessity of a proper fit

In some cases, an improper fit may lead to damage and shorten bearing life. Therefore it is necessary to carefully select the proper fit. Some possible bearing failures caused by an improper fit are listed below.

- Raceway cracking, early spalling and displacement of raceway
- Raceway and shaft or housing abrasion caused by creeping and fretting corrosion
- Seizing caused by negative internal clearances
- Increased noise and deteriorated rotational accuracy due to raceway groove deformation

Please refer to the section "16. Bearing damage and corrective measures" for information concerning diagnosis of these conditions.

Bearing Fits

7.3 Fit selection

Selection of a proper fit is dependent upon thorough analysis of bearing operating conditions, including consideration of:

- Shaft and housing material, wall thickness, surface finish accuracy, etc.
- Machinery operating conditions (nature and magnitude of load, rotational speed, temperature, etc.)

7.3.1 "Tight fit" or "Loose fit"

 (1) For bearing rings under rotating loads, a tight fit is necessary (see Table 7.1). "Raceways under rotating loads" refers to raceways receiving loads rotating relative to their radial direction. For bearing rings under static loads, on the other hand, a loose fit is sufficient.
 (Example) Rotating inner ring load = the direction of the radial load on the inner ring is rotating relatively
 (2) For non-separable bearings, such as deep groove ball bearings, it is generally recommended that either the inner ring or outer ring be given a loose fit.

Table 7.1 Radial load and bearing fit

Design	Bearing rota	tion	Ring load	Fit
Static load		Inner ring: Rotating		
		Outer ring: Stationary	Rotating inner ring load	Inner ring: Tight fit
Unbalanced load		Inner ring: Stationary	Static outer ring load	Outer ring: Loose fit
		Outer ring: Rotating		
Static load		Inner ring: Stationary		
		Outer ring: Rotating	Static inner ring load	Inner ring: Loose fit
Unbalanced load		Inner ring: Rotating	Rotating outer ring load	Outer ring: Tight fit
(000)		Outer ring: Stationary		

7.3.2 Recommended fits

Bearing fit is governed by the tolerances selected for bearing shaft diameters and housing bore diameters.

Widely used fits for Class 0 tolerance bearings and various shaft and housing bore diameter tolerances are shown in **Fig. 7.1**. Generally-used, standard fits for most types of bearings and operating conditions are

shown in Table 7.2 through Table 7.7. Table 7.2: Fits for radial bearings Table 7.3: Fits for thrust bearings Table 7.4: Fits for electric motor bearings Table 7.6: Inch series tapered roller bearings Fits of (ANSI/ABMA CLASS 4)

 Table 7.7: Inch series tapered roller

 bearings Fits of (ANSI/ABMA

 CLASS 3, CLASS 0)

 Table 7.5 shows fits and their numerical values.

For special fits or applications, please consult **NTN** Engineering.

7.3.3 Interference minimum and maximum values

The following points should be considered when it is necessary to calculate the interference for an application:

- Regarding minimum values,
- 1) interference is reduced by radial loads
- interference is reduced by differences between bearing temperature and ambient temperature
- interference is reduced by variation in mating surface
- 4) interference is reduced by deformation
- The upper limit value should not exceed

1/ 1 000 of the shaft diameter. Required interference calculations are

shown below.

(1) Mating surface variation and interference

Interference decreases because the mating surface is smoothed by the resultant fit (surface roughness is reduced). The amount the interference decreases depends on the roughness of the mating surfaces. It is generally necessary to anticipate the following decrease in interference.

For ground shafts: 1.0 to 2.5 μ m For machined shafts: 5.0 to 7.0 μ m

The interference including this decrease amount is called effective interference.

(2) Radial loads and required interference

Interference of the inner ring and shaft decreases when a radial load is applied to the bearing. The interference required for installation to solid shafts is expressed by formula (7.1) and formula (7.2) for each load condition.

 $\begin{array}{l} \mbox{General applications } (F_r \leq 0.3 C_{0r}) \\ \Delta d_F = 0.08 \; (d \cdot F_r / B)^{1/2} \; \cdots \eqno(7.1) \\ \mbox{Under heavy load conditions } (F_r > 0.3 C_{0r}) \\ \Delta d_F = 0.02 \; (F_r / B) \; \cdots \eqno(7.2) \\ \mbox{Where:} \end{array}$

 $\Delta d_{
m F}$: Required effective interference according to radial load, $\mu{
m m}$

- d : Bearing bore diameter, mm
- *B* : Inner ring width, mm
- F_{r} : Actual radial load, N

 C_{0r} : Basic static load rating, N For hollow shafts, please contact **NTN** Engineering.

(3) Temperature difference and required interference

Interference between inner rings and steel shafts is reduced as a result of temperature increases (difference between bearing temperature and ambient temperature, ΔT) caused by bearing rotation. Calculation of the minimum required amount of interference in such cases is shown in formula (7.3).

 $\Delta d_{\rm T} = 0.0015 \cdot d \cdot \Delta T$ (7.3) Where:

- Δd_{T} : Required effective interference for temperature difference, $\mu\mathrm{m}$
- $\Delta\,T~$: Difference between bearing temperature and ambient temperature, °C
- *d* : Bearing bore diameter, mm

NTN

(4) Maximum interference

When bearing rings are installed with an interference fit, tensile or compressive stress may occur along their raceways. If interference is too great, this may cause damage to the rings and reduce bearing life. The maximum stress due to the resultant fit must not exceed approximately 127 MPa for safety. If the value is to be exceeded, consult **NTN** Engineering.

See section "17.4 Fitting surface pressure" for the calculation method of maximum stress due to the resultant fit.

(5) Interference change amount when materials other than steel are used for shafts and housings

When materials other than steel are used for shafts and housings, the fits between the inner ring and the shaft and the outer ring and the housing change because of difference in the linear expansion coefficient of each material as the temperature rises during the rotation of the bearing. Therefore, it is necessary to set the resultant fit with linear expansion coefficients in consideration. Calculation of the change in interference is shown in formula (7.4).

 $\Delta d_{\text{TE}} = (\alpha_1 - \alpha_2) \times d \times \Delta T$ (7.4) Where:

- $\Delta d_{\rm TE}$: Change in interference caused by difference in the linear expansion coefficients, mm
- α_1 : Bearing linear expansion coefficient, 1/°C
- α_2 : Shaft and housing linear expansion coefficient, 1/°C
- *d* : Reference dimension of resultant fit, mm
- ΔT : Temperature increase by bearing rotation, °C

(Linear expansion coefficient: see Table 13.6

and Table 13.12 in "13. Bearing Materials".)

7.3.4 Other details

- (1) Large interference fits are recommended for,
- Operating conditions with large vibrations or shock loads
- Applications using hollow shafts or housings with thin walls
- Applications using housings made of light alloys or plastic
- (2) Small interference fits are preferable for,
- Applications requiring high running accuracy
- Applications using small sized bearings or thin walled bearings
- (3) Consideration must also be given to the fact that fit selection will effect internal bearing clearance selection (refer to page A-88).
- (4) A particular type of fit is recommended for SL type cylindrical roller bearings (refer to page C-65).
- (5) Bearing dimensions are measured and managed at a temperature of 20 °C.

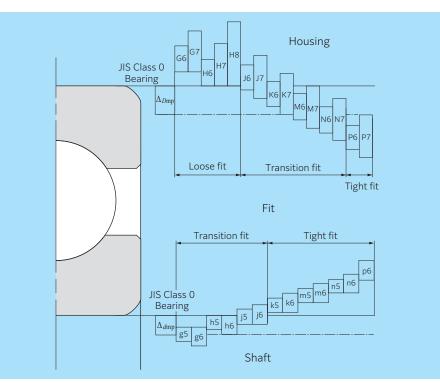


Fig 7.1 State of resultant fit

Bear	ing	Fits

Table 7.2 General standards for radial bearing fits (JIS Class 0, 6X, 6)Table 7.2 (1) Tolerance class of shafts commonly used for radial bearings (Classes 0, 6X and 6)

Conc	Condition		Ball bearing Ball bearing Tapered roller bearing		Sphe roller b		Shaft tolerance class	Remarks	
				haft diar	· · ·				
		Over	Incl.	Over	Incl.	Over	Incl.		
			Cylindi	rical bor	e bearin	g (Classe	es 0, 6X	and 6)	
	Light load ¹⁾ or Fluctuating load		18 100 200 —	 40 140	 40 140 200	 	 	h5 js6 k6 m6	When greater accuracy is required js5, k5, and m5 may be substituted for js6, k6, and m6.
Inner ring rotational load or load of undetermined direction	Normal load ¹⁾	 18 100 140 200 -	18 100 140 200 280 —	 40 100 140 200 	 40 100 140 200 400 	 40 65 100 140 280		js5 k5 m6 n6 p6 r6	Alteration of inner clearances to accommodate fit is not a consideration with single- row angular contact bearings and tapered roller bearings. Therefore, K5 and m5 may be substituted for k6 and m6.
	Heavy load ¹⁾ or Impact load	 		50 140 200	140 200 —	50 100 140	100 140 200	n6 p6 r6	Use bearings with larger internal clearances than CN clearance bearings.
Static inner	Inner ring must move easily over shaft		Overall shaft diameter					g6	When greater accuracy is required use g5. For large bearings, f6 will suffice to facilitate movement.
ring load	Inner ring does not have to move easily over shaft		Overall shaft diameter						When greater accuracy is required use h5.
Center a	Center axial load			Overall shaft diameter					Generally, shaft and inner rings are not fixed using resultant fits.
	Тар				ass 0) (v	ith adap	oter or w	ithdrawal sl	eeve)
Full	load		0	verall sh	aft diam	eter		h9/IT5 ²⁾	h10/IT7 ²⁾ will suffice for power transmitting shafts.

Table 7.2 (2) Fit with shaft [fits for tapered bore bearings (Class 0) with adapter assembly/ withdrawal sleeve]

Full load	All bearing types	Tolerance	h9 /IT5 ²⁾	General applications
Full load	All bearing types	class	h10/IT7 ²⁾	Transmission shafts, etc.

1) Standards for light loads, normal loads, and heavy loads

 \int Light loads: dynamic equivalent radial load $\leq 0.05C_r$

 $\frac{1}{2}$ Normal loads: $0.05C_r$ < dynamic equivalent radial load $\leq 0.10C_r$

l Heavy loads: 0.10 $C_{\rm r}$ < dynamic equivalent radial load

2) IT5 and IT7 show shaft roundness tolerances, cylindricity tolerances, and related values.

Note: 1. All values and fits listed in the above tables are for solid steel shafts.

2. For ULTAGE™ series spherical roller bearings, refer to Table 2 (B-213) in bearing tables "Spherical Roller Bearings".

Table 7.2 (3) Tolerance class of housing bores commonly used for radial bearings (Classes 0, 6X and 6	5)

		Conditions		Housing bore	Remarks	
Housing	Load	type, etc.	Outer ring axial direction movement ³⁾	tolerance class		
		All types of loads	Yes	H7	G7 can be used for large bearings or bearings with large temperature differential between the outer ring and housing.	
Single housing or Split housing		Light ¹⁾ or ordinary load ¹⁾	Yes	H8		
- F	Static outer ring load	Shaft and inner ring become hot	Easily	G7	F7 can be used for large bearings or bearings with large temperature differential between the outer ring and housing.	
		Requires precise rotation under light	As a rule, it cannot move.	К6	Primarily applies to roller bearings.	
		or ordinary loads	Yes	JS6	Primarily applies to ball bearings.	
		Requires low noise operation	Yes	H6		
		Light or ordinary load	Yes	JS7	If high accuracy is required, JS6 and K6 are	
Single housing	Indeterminate load	Ordinary or heavy load ¹⁾	As a rule, it cannot move.	К7	used in place of JS7 and K7.	
		High impact load	No	M7		
		Light or fluctuating load	No	M7		
	Rotating outer ring load	Ordinary or heavy load	No	N7	Primarily applies to ball bearings.	
		Heavy load or large impact load with thin wall housing ²⁾	No	Ρ7	Primarily applies to roller bearings.	

1) Standards for light loads, normal loads, and heavy loads

 \int Light loads: dynamic equivalent radial load $\leq 0.05C_r$

Normal loads: $0.05C_r$ < dynamic equivalent radial load $\leq 0.10C_r$

Heavy loads: $0.10C_{\rm r}$ < dynamic equivalent radial load

2) The axial direction needs to be secured because the outer ring may move in the shaft direction, causing problems, depending on the use. (Example: planetary gear, etc.)

3) Indicates whether or not outer ring axial movement is possible with non-separable type bearings.

Note: 1. All values and fits listed in the above tables are for cast iron or steel housings.

2. If only a center axial load is applied to the bearing, select a tolerance class that provides clearance for the outer ring in the radial direction.

Table 7.3 Standard fits for thrust bearings (JIS Class 0 and 6) Table 7.3 (1) Shaft fits

Bearing type	Load conditions		Fit	Shaft diameter mm Over Incl.	Tolerance class
All thrust bearings	Cent	ered axial load only	Transition fit	Overall shaft diameter	js6 or h6
	Static inner ring load		Transition fit	Overall shaft diameter	js6
Thrust spherical roller bearings	Combined load	Rotating inner ring load or Indeterminate load	Transition fit Tight fit	UP to 200 200 to 400 400 or more	k6 or js6 m6 or k6 n6 or m6

Table 7.3 (2) Housing fits

Bearing type	L	oad conditions	Fit	Tolerance class	Remarks
All thrust bearings	Cont	ered axial load only		Select a tolerance class that will provide clearance between outer ring and housing.	
	Cent	ered axial load only	Loose fit	H8	Greater accuracy required with thrust ball bearings
		Static outer ring load		H7	
Thrust spherical roller bearings	Combined load	load Indeterminate load		K7	Normal operating conditions
		or Rotating outer ring load	Transition fit	M7	For relatively large radial loads

Note: All values and fits listed in the above tables are for cast iron or steel housings.

Table 7.4 Fits for electric motor bearings

	Shaft fi	ts	Housing fits		
Bearing type	Shaft diameter mm Over Incl.	Tolerance class	Housing bore diameter	Tolerance class	
Deep groove ball bearings	UP to 18 18 to 100 100 to 160	j5 k5 m5	All sizes	H6 or J6	
Cylindrical roller bearings	UP to 40 40 to 160 160 to 200	k5 m5 n6	All sizes	H6 or J6	

Comme

Bearing Fits

Table 7.5 Numeric values associated with fits for radial bearing of Class 0 Table 7.5 (1) Shaft fits

Nor	ninal	Mean	bore ¹⁾	g5	g6	h5	h6	i5	js5	j6
bea b	aring ore neter	dian	neter ation	Bearing Shaft	Bearing Shaft	-			Bearing Shaft	-
n	<i>d</i> nm Incl.		/mp Lower	_			——	_	_	_
3		0	-8	4T- 9L	4T-12L	8T- 5L	8T- 8L	11T- 2L	10.5T- 2.5L	14T- 2L
6		0	-8	3T-11L	3T-14L	8T- 6L	8T- 9L	12T- 2L	10.51 2.5E	15T- 2L
10	18	0	-8	2T-14L	2T-17L	8T- 8L	8T-11L	13T- 3L	12T - 4L	16T- 3L
18	30	0	-10	3T-16L	3T-20L	10T- 9L	10T-13L	15T- 4L	14.5T- 4.5L	19T- 4L
30	50	0	-12	3T-20L	3T-25L	107-51 12T-11L	12T-16L	18T- 5L	17.5T- 5.5L	23T- 5L
50	80	0	-15	5T-23L	5T-29L	15T-13L	15T-19L	21T- 7L	21.5T- 6.5L	27T- 7L
80	120	0	-20	8T-27L	8T-34L	20T-15L	20T-22L	26T- 9L	27.5T- 7.5L	33T- 9L
120 140 160	160	0	-25	11T-32L	11T-39L	25T-18L	25T-25L	32T-11L	34T - 9L	39T-11L
180 200 225	225	0	-30	15T-35L	15T-44L	30T-20L	30T-29L	37T-13L	40T -10L	46T-13L
250 280	280 315	0	-35	18T-40L	18T-49L	35T-23L	35T-32L	42T-16L	46.5T-11.5L	51T-16L
	355 400	0	-40	22T-43L	22T-54L	40T-25L	40T-36L	47T-18L	52.5T-12.5L	58T-18L
400 450		0	-45	25T-47L	25T-60L	45T-27L	45T-40L	52T-20L	58.5T-13.5L	65T-20L

1) The above table is not applicable to tapered roller bearings whose bore diameter d is 30 mm or less.

Table 7.5 (2) Housing fits

Nom	ninal	M	ean	G7	H6	H7	J6	J7	JS7	К6
	bearing outside		ide ²⁾ neter ation	Housing Bearing						
L m)		Omp							
Over	Incl.	Upper	Lower							
6	10	0	-8	5L- 28L	0-17L	0- 23L	4T-13L	7T-16L	7.5T-15.5L	7T-10L
10	18	0	-8	6L- 32L	0-19L	0- 26L	5T-14L	8T-18L	9T -17L	9T-10L
18	30	0	-9	7L- 37L	0-22L	0- 30L	5T-17L	9T-21L	10.5T-19.5L	11T-11L
30	50	0	-11	9L- 45L	0-27L	0- 36L	6T-21L	11T-25L	12.5T-23.5L	13T-14L
50	80	0	-13	10L- 53L	0-32L	0- 43L	6T-26L	12T-31L	15T -28L	15T-17L
80	120	0	-15	12L- 62L	0-37L	0- 50L	6T-31L	13T-37L	17.5T-32.5L	18T-19L
120	150	0	-18	14L- 72L	0-43L	0- 58L	7T-36L	14T-44L	20T -38L	21T-22L
150	180	0	-25	14L- 79L	0-50L	0- 65L	7T-43L	14T-51L	20T -45L	21T-29L
180	250	0	-30	15L- 91L	0-59L	0- 76L	7T-52L	16T-60L	23T -53L	24T-35L
250	315	0	-35	17L-104L	0-67L	0- 87L	7T-60L	16T-71L	26T -61L	27T-40L
315	400	0	-40	18L-115L	0-76L	0- 97L	7T-69L	18T-79L	28.5T-68.5L	29T-47L
400	500	0	-45	20L-128L	0-85L	0-108L	7T-78L	20T-88L	31.5T-76.5L	32T-53L

2) The above table is not applicable to tapered roller bearings whose outside diameter D is 150 mm or less. Note: Fit symbol "L" indicates clearance and "T" indicates interference.

								Unit: µm
js6	k5	k6	m5	m6	n6	р6	r6	Nominal
Bearing Shaft	bearing bore							
								diameter
								d mm
								Over Incl.
12T - 4L	14T-1T	17T-1T	17T- 4T	20T- 4T	24T- 8T	28T-12T		3 6
12.5T- 4.5L	15T-1T	18T-1T	20T- 6T	23T- 6T	27T-10T	32T-15T		6 10
13.5T- 5.5L	17T-1T	20T-1T	23T- 7T	26T- 7T	31T-12T	37T-18T		10 18
16.5T- 6.5L	21T-2T	25T-2T	27T- 8T	31T- 8T	38T-15T	45T-22T		18 30
20T - 8L	25T-2T	30T-2T	32T- 9T	37T- 9T	45T-17T	54T-26T		30 50
24.5T- 9.5L	30T-2T	36T-2T	39T-11T	45T-11T	54T-20T	66T-32T		50 80
31T -11L	38T-3T	45T-2T	48T-13T	55T-13T	65T-23T	79T-37T		80 120
37.5T-12.5L	46T-3T	53T-3T	58T-15T	65T-15T	77T-27T	93T-43T	113T- 63T 115T- 65T 118T- 68T	120 140 140 160 160 180
44.5T-14.5L	54T-4T	63T-4T	67T-17T	76T-17T	90T-31T	109T-50T	136T- 77T 139T- 80T 143T- 84T	180 200 200 225 225 250
51T -16L	62T-4T	71T-4T	78T-20T	87T-20T	101T-34T	123T-56T	161T- 94T 165T- 98T	250 280 280 315
58T -18L	69T-4T	80T-4T	86T-21T	97T-21T	113T-37T	138T-62T	184T-108T 190T-114T	315 355 355 400
65T -20L	77T-5T	90T-4T	95T-23T	108T-23T	125T-40T	153T-68T	211T-126T 217T-132T	400 450 450 500

Unit: µm

K7	M7	N7	P7	Nominal bearing outside diameter	
Housing Bearing	Housing Bearing	Housing Bearing	Housing Bearing		
				D mm Over Incl.	
10T-13L	15T- 8L	19T- 4L	24T- 1T	6 10	
12T-14L	18T- 8L	23T- 3L	29T- 3T	10 18	
15T-15L	21T- 9L	28T- 2L	35T- 5T	18 30	
18T-18L	25T-11L	33T- 3L	42T- 6T	30 50	
21T-22L	30T-13L	39T- 4L	51T- 8T	50 80	
25T-25L	35T-15L	45T- 5L	59T- 9T	80 120	
28T-30L	40T-18L	52T- 6L	68T-10T	120 150	
28T-37L	40T-25L	52T-13L	68T- 3T	150 180	
33T-43L	46T-30L	60T-16L	79T- 3T	180 250	
36T-51L	52T-35L	66T-21L	88T- 1T	250 315	
40T-57L	57T-40L	73T-24L	98T- 1T	315 400	
45T-63L	63T-45L	80T-28L	108T- 0	400 500	

TN	

Unit: µm

 Table 7.6 General fit standards for tapered roller bearings using US customary unit (ANSI Class 4)

 Table 7.6 (1) Fit with shaft

 Unit: μm

Operating conditions		Nominal bearing bore diameter d mm Over Incl.		Bore diameter tolerance Δ_{ds} Upper Lower		Shaft diameter tolerance Upper Lower		Fit ¹⁾	Remarks		
0	Normal load	 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +25 +51 +76	0 0 0	+ 38 + 64 +127 +191	+ 25 + 38 + 76 +114	38T- 13T 64T- 13T 127T- 25T 191T- 38T	Applicable when a slight impact load is applied as well.		
Rotating inn ring load	Heavy load Impact load	 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +25 +51 +76	0 0 0 0	Minimu	+ 38 64T- 25T mean interference per 1 mm of inner ring bore diameter m interference is 25 μ m. Tolerance for the shaft is d to match tolerance of bearing bore diameter. +381 457T-305T				
Rotating outer ring load	Inner ring does not have to move easily over shaft with an ordinary load.	 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +25 +51 +76	0 0 0 0	+ 13 + 25 + 51 + 76	0 0 0 0	13T- 13L 25T- 25L 51T- 51L 76T- 76L	Not applicable when		
	Inner ring must move easily over shaft with an ordinary load.	 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +25 +51 +76	0 0 0 0	0 0 0 0	- 13 - 25 - 51 - 76	0- 13L 0- 51L 0-102L 0-152L	impact load is applied.		

Table 7.6 (2) Fit with housing

Unit: µm

Operating conditions		Nominal bearing outside diameter D mm Over Incl.		Outside diameter dimensional tolerance Δ_{Ds} Upper Lower		Housing bore diameter tolerance		Fit ¹⁾	Types of fits
oad	When used on floating or fixed side	 76.2 127.0 304.8 609.6	76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0 0	+ 76 + 76 + 76 +152 +229	+ 51 + 51 + 51 +102 +152	25L- 76L 25L- 76L 25L- 76L 51L-152L 76L-229L	Loose fit
Rotating inner ring load	When outer ring is adjusted in the axial direction	 76.2 127.0 304.8 609.6	76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0	+ 25 + 25 + 51 + 76 +127	0 0 + 25 + 51	25T- 25L 25T- 25L 25T- 51L 25T- 76L 25T-127L	Transition fit
	When outer ring is not adjusted in the axial direction	 76.2 127.0 304.8 609.6	76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0 0	- 13 - 25 - 25 - 25 - 25	- 38 - 51 - 51 - 76 -102	64T- 13T 76T- 25T 76T- 25T 127T- 25T 178T- 25T	Tight fit
Rotating outer ring load	When outer ring is not adjusted in the axial direction	 76.2 127.0 304.8 609.6	76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0	- 13 - 25 - 25 - 25 - 25 - 25	- 38 - 51 - 51 - 76 -102	64T- 13T 76T- 25T 76T- 25T 127T- 25T 178T- 25T	ngnunt

1) Fit symbol "L" indicates clearance and "T" indicates interference.

Table 7.7 General fit standards for tapered roller bearings using US customary unit (ANSI Classes 3 and 0)Table 7.7 (1) Fit with shaftUnit: μ m

Operating conditions		Nominal bearing bore diameter d mm		Bore diameter tolerance Δ_{ds}		Shaft diameter tolerance		Fit ¹⁾
		Over	Incl.	Upper	Lower	Upper	Lower	
	Precision	—	304.8	+13	0	+ 30	+18	30T- 5T
Rotating inner ring load	machine tool	304.8	609.6	+25	0	+ 64	+38	64T-13T
	spindles	609.6	914.4	+38	0	+102	+64	102T-25T
	Heavy load	—	304.8	+13	0	Minimum interference is 0.25 μ m per 1 mm of inner ring bore diameter		
Soti	Shock load High-speed	304.8	609.6	+25	0			
-	rotation	609.6	914.4	+38	0			
er								
Rotating outer ring load	Precision machine tool spindles	—	304.8	+13	0	+ 30	+18	30T- 5T
		304.8	609.6	+25	0	+ 64	+38	64T-13T
		609.6	914.4	+38	0	+102	+64	102T-25T

Note: For Class 0, nominal bearing bore diameter d applies to 304.8 mm or less.

Table 7.7 (2) Fit with housing

Bearing Fits

Nominal Outside Housing bore bearing outside diameter diameter dimensional diameter tolerance Operating Fit¹⁾ Types of fits tolerance conditions D mm $\Delta D_{\rm S}$ Over Incl. Upper Lower Upper Lower 152.4 +13 +38 +25 13L-38L _ 0 When used for 152.4 304.8 +13 0 +38 +25 13L-38L floating-side 304.8 609.6 +25 0 +64 +38 13L-64L 609.6 914.4 +38 0 +89 +51 13L-89L Loose fit _ 152.4 +13 0 +25 +13 0-25L ring load +13 +25 +13 0-25L When used for 152.4 304.8 0 fixed side 0-51L 304.8 609.6 +25 0 +51 +25 609.6 +76 914.4 +38 0 +38 0-76L L _ 152.4 +13 0 +13 0 13T-13L Rotating i When outer ring 152.4 +25 13T-25L 304.8 +13 0 0 is adjusted in Transition fit 304.8 609.6 +13 +25 0 25T-25L 0 axial direction 609.6 914.4 +38 0 +38 0 38T-38L 152.4 +13 0 0 -13 25T- 0 When outer ring 152.4 304.8 +13 0 -25 38T- 0 0 is not adjusted 304.8 609.6 +25 0 0 -25 51T- 0 in axial direction -38 609.6 914.4 +38 0 0 76T- 0 Tight fit Rotating outer ring load Normal load 152.4 +13 0 -13 -25 38T-13T When outer ring 152.4 304.8 +13 0 -13 -38 51T-13T is not adjusted +25 304.8 609.6 0 -13 -38 64T-13T 609.6 914.4 +38 0 -13 -51 89T-13T direction

1) Fit symbol "L" indicates clearance and "T" indicates interference.

Note: For Class 0, nominal bearing outside diameter D applies to 304.8 mm or less.